【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設函數f(x)= +λ(x∈R)的圖象關于直線x=π對稱,其中ω,λ為常數,且ω∈( ,1)
(1)求函數f(x)的最小正周期;
(2)若y=f(x)的圖象經過點( ,0)求函數f(x)在區(qū)間[0, ]上的取值范圍.
【答案】
(1)解:∵f(x)= +λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx×2 cosωx+λ
=﹣(cos2ωx﹣sin2ωx)+ sin2ωx+λ
= sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣ )+λ
∵圖象關于直線x=π對稱,∴2πω﹣ = +kπ,k∈z
∴ω= + ,又ω∈( ,1)
∴k=1時,ω=
∴函數f(x)的最小正周期為 =
(2)解:∵f( )=0
∴2sin(2× × ﹣ )+λ=0
∴λ=﹣
∴f(x)=2sin( x﹣ )﹣
由x∈[0, ]
∴ x﹣ ∈[﹣ , ]
∴sin( x﹣ )∈[﹣ ,1]
∴2sin( x﹣ )﹣ =f(x)∈[﹣1﹣ ,2﹣ ]
故函數f(x)在區(qū)間[0, ]上的取值范圍為[﹣1﹣ ,2﹣ ]
【解析】(1)先利用向量數量積運算性質,求函數f(x)的解析式,再利用二倍角公式和兩角差的余弦公式將函數f(x)化為y=Asin(ωx+φ)+k型函數,最后利用函數的對稱性和ω的范圍,計算ω的值,從而得函數的最小正周期;(2)先將已知點的坐標代入函數解析式,求得λ的值,再求內層函數的值域,最后將內層函數看做整體,利用正弦函數的圖象和性質即可求得函數f(x)的值域.
科目:高中數學 來源: 題型:
【題目】如圖,PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點,AE⊥PC,AF⊥PB,給出下列結論:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數g(x)=ax2﹣2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設f(x)= .
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實數k的取值范圍;
(3)方程f(|2x﹣1|)+k( ﹣3)有三個不同的實數解,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設直線ax﹣y+1=0與圓C交于A,B兩點,是否存在實數a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC三個頂點分別為A(2,4),B(1,﹣3),C(﹣2,1).
(1)求BC邊上的高所在的直線方程;
(2)設AC中點為D,求△DBC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小王、小李兩位同學玩擲骰子(骰子質地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點數記為x;小李后擲一枚骰子,向上的點數記為y.
(1)求x+y能被3整除的概率;
(2)規(guī)定:若x+y≥10,則小王贏,若x+y≤4,則小李贏,其他情況不分輸贏.試問這個游戲規(guī)則公平嗎?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】齊王與田忌賽馬,每場比賽三匹馬各出場一次,共賽三次,以勝的次數多者為贏.田忌的上馬優(yōu)于齊王的中馬,劣于齊王的上馬,田忌的中馬優(yōu)于齊王的下馬,劣于齊王的中馬,田忌的下馬劣于齊王的下馬.現各出上、中、下三匹馬分組進行比賽,如雙方均不知對方馬的出場順序,則田忌獲勝的概率是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com