【題目】函數(shù)y=Asin(ωx+φ)(ω>0,||< ,x∈R)的部分圖象如圖所示,則函數(shù)表達(dá)式為(
A.y=﹣4sin(
B.y=4sin(
C.y=﹣4sin(
D.y=4sin(

【答案】A
【解析】解:由圖象得A=±4, =8,∴T=16,∵ω>0,∴ω= = , ① 若A>0時(shí),y=4sin( x+φ),
當(dāng)x=6時(shí), φ=2kπ,φ=2kπ﹣ ,k∈Z;
又|φ|< ,∴φ∈;
②若A<0時(shí),y=﹣4sin( x+φ),
當(dāng)x=﹣2時(shí), φ=2kπ,φ=2kπ+ ,k∈z;
又|φ|< ,∴φ=
綜合①②該函數(shù)解析式為y=﹣4sin( ).
故選A.
先由圖象的最高點(diǎn)、最低點(diǎn)的縱坐標(biāo)確定A(注意A的正負(fù)性),再通過(guò)周期確定ω,最后通過(guò)特殊點(diǎn)的橫坐標(biāo)確定φ,則問(wèn)題解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.

(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸端點(diǎn)到右焦點(diǎn)的距離為2.

求橢圓的方程;

過(guò)點(diǎn)的直線交橢圓兩點(diǎn),交直線于點(diǎn),若, ,求證: 為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】知函數(shù)y= 的定義域?yàn)椋?/span>
A.(﹣∞,1]
B.(﹣∞,2]??
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著醫(yī)院對(duì)看病掛號(hào)的改革,網(wǎng)上預(yù)約成為了當(dāng)前最熱門(mén)的就診方式,這解決了看病期間病人插隊(duì)以及醫(yī)生先治療熟悉病人等諸多問(wèn)題;某醫(yī)院研究人員對(duì)其所在地區(qū)年齡在10~60歲間的位市民對(duì)網(wǎng)上預(yù)約掛號(hào)的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如下圖所示.

(Ⅰ)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);

(Ⅱ)若按分層抽樣的方法從年齡在以內(nèi)及以內(nèi)的市民中隨機(jī)抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人進(jìn)行調(diào)研,求抽取的2人中,至多1人年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)人有n把鑰匙,其中只有一把可以打開(kāi)房門(mén),他隨意的進(jìn)行試開(kāi),若試開(kāi)過(guò)的鑰匙放在一邊,試開(kāi)次數(shù)X為隨機(jī)變量,則P(X=k)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從3名骨科、4名腦外科和5名內(nèi)科醫(yī)生中選派5人組成一個(gè)抗震救災(zāi)醫(yī)療小組,則骨科、腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)是(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達(dá)式,并直接寫(xiě)出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,三角形VAB為等邊三角形,AC⊥BC且 AC=BC= ,O、M分別為AB和VA的中點(diǎn).

(1)求證:VB∥平面MOC;
(2)求直線MC與平面VAB所成角.

查看答案和解析>>

同步練習(xí)冊(cè)答案