(2013•山東)設正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當
z
xy
取得最小值時,x+2y-z的最大值為(  )
分析:將z=x2-3xy+4y2代入
z
xy
,利用基本不等式化簡即可求得x+2y-z的最大值.
解答:解:∵x2-3xy+4y2-z=0,
∴z=x2-3xy+4y2,又x,y,z為正實數(shù),
z
xy
=
x
y
+
4y
x
-3≥2
x
y
4y
x
-3=1(當且僅當x=2y時取“=”),
即x=2y(y>0),
∴x+2y-z=2y+2y-(x2-3xy+4y2
=4y-2y2
=-2(y-1)2+2≤2.
∴x+2y-z的最大值為2.
故選C.
點評:本題考查基本不等式,將z=x2-3xy+4y2代入
z
xy
,求得
z
xy
取得最小值時x=2y是關鍵,考查配方法求最值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•山東)設正實數(shù)x,y,z滿足x2-3xy+4y2-z=0.則當
xy
z
取得最大值時,
2
x
+
1
y
-
2
z
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}滿足
b1
a1
+
b2
a2
+…+
bn
an
=1-
1
2n
,n∈N*,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設函數(shù)f(x)=
3
2
-
3
sin2ωx-sinωxcosωx(ω>0),且y=f(x)的圖象的一個對稱中心到最近的對稱軸的距離為
π
4
,
(Ⅰ)求ω的值
(Ⅱ)求f(x)在區(qū)間[π,
2
]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案