【題目】某市甲、乙兩地為了爭創(chuàng)“市級文明城市”,現(xiàn)市文明委對甲、乙兩地各派10名專家進行打分評優(yōu),所得分?jǐn)?shù)情況如下莖葉圖所示.

(1)分別計算甲、乙兩地所得分?jǐn)?shù)的平均值,并計算乙地得分的中位數(shù);

(2)從乙地所得分?jǐn)?shù)在間的成績中隨機抽取2份做進一步分析,求所抽取的成績中,至少有一份分?jǐn)?shù)在間的概率;

(3)在甲、乙兩地所得分?jǐn)?shù)超過90分的成績中抽取其中2份分析其合理性,求這2份成績都是來自甲地的概率.

【答案】(1)見解析;(2);(3).

【解析】分析:(1)由題得,結(jié)合所給的數(shù)據(jù)計算可得甲地得分的平均數(shù)為,乙地得分的平均數(shù)為,乙地得分的中位數(shù)為.

(2)由莖葉圖可知,乙地得分中分?jǐn)?shù)在間的有四份成績,隨機抽取2份的情況有6種,其中至少有一份分?jǐn)?shù)在間的情況有5.故所求概率.

(3)甲、乙兩地所得分?jǐn)?shù)中超過90分的一共有5份,隨機抽取其中2份,共10種情況.其中兩份成績都來自甲地的有3種情況,故所求概率.

詳解:(1)由題得,甲地得分的平均數(shù)為,

乙地得分的平均數(shù)為

乙地得分的中位數(shù)為.

(2)由莖葉圖可知,乙地得分中分?jǐn)?shù)在間的有65,72,75,79四份成績,隨機抽取2份的情況有:,,,共6種,其中至少有一份分?jǐn)?shù)在間的情況有:,,,,,共5.故所求概率.

(3)甲、乙兩地所得分?jǐn)?shù)中超過90分的一共有5份,記甲地中的三份分別為,乙地中的兩份分別為.隨機抽取其中2份,所有情況如下:,,,,,,,,一共10.

其中兩份成績都來自甲地的有3種情況:,,

故所求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文中有回文句,如:上海自來水來自海上,倒過來讀完全一樣。數(shù)學(xué)中也有類似現(xiàn)象,如:88,454,7337,43534等,無論從左往右讀,還是從右往左讀,都是同一個數(shù),稱這樣的數(shù)為回文數(shù)”!

二位的回文數(shù)有11,22,33,44,55,66,77,88,99,共9個;

三位的回文數(shù)有101,111,121,131,…,969,979,989,999,共90個;

四位的回文數(shù)有1001,1111,1221,…,9669,9779,9889,9999,共90個;

由此推測:11位的回文數(shù)總共有_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求函數(shù),上的最大值;

(Ⅱ)討論函數(shù)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】楊輝三角,是二項式系數(shù)在三角形中的一種幾何排列。在歐洲,這個表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年發(fā)現(xiàn)這一規(guī)律的,比楊輝要遲393年,比賈憲遲600年。右圖的表在我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里就出現(xiàn)了,這又是我國數(shù)學(xué)史上的一個偉大成就。如圖所示,在“楊輝三角”中,從1開始箭頭所指的數(shù)組成一個鋸齒形數(shù)列:1,2,3,3,6,4,10,5,…,則此數(shù)列前16項和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,,求的值域;

2)當(dāng)時,求的最小值

3)是否存在實數(shù)、,同時滿足下列條件:① ;② 當(dāng)的定義域為時,其值域為.若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自2016年底,共享單車日漸火爆起來,逐漸融入大家的日常生活中,某市針對18歲到80歲之間的不同年齡段的城市市民使用共享單車情況進行了抽樣調(diào)查,結(jié)果如下表所示:

(1)采用分層抽樣的方式從年齡在內(nèi)的人中抽取人,求其中男性、女性的使用人數(shù)各為多少?

(2)在(1)中選出人中隨機抽取4人,求其中恰有2人是女性的概率;

(3)用樣本估計總體,在全市18歲到80歲的市民中抽4人其中男性使用的人數(shù)記為,求的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子產(chǎn)品生產(chǎn)企業(yè)生產(chǎn)一種產(chǎn)品,原計劃每天可以生產(chǎn)噸產(chǎn)品,每噸產(chǎn)品可以獲得凈利潤萬元,其中,由于受市場低迷的影響,該企業(yè)的凈利潤出現(xiàn)較大幅度下滑.為提升利潤,該企業(yè)決定每天投入20萬元作為獎金刺激生產(chǎn).在此方案影響下預(yù)計每天可增產(chǎn)噸產(chǎn)品,但是受原材料數(shù)量限制,增產(chǎn)量不會超過原計劃每天產(chǎn)量的四分之一.試求在每天投入20萬元獎金的情況下,該企業(yè)每天至少可獲得多少利潤(假定每天生產(chǎn)出來的產(chǎn)品都能銷售出去)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組有男生20人,女生10人,從中抽取一個容量為5的樣本,恰好抽到2名男生和3名女生,則

①該抽樣可能是系統(tǒng)抽樣;

②該抽樣可能是隨機抽樣:

③該抽樣一定不是分層抽樣;

④本次抽樣中每個人被抽到的概率都是

其中說法正確的為( )

A.①②③B.②③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),平面直角坐標(biāo)系中,的方程為,的方程為,兩圓內(nèi)切于點,動圓外切,與內(nèi)切.

1)求動圓圓心的軌跡方程;

2)如圖(2),過點作的兩條切線,若圓心在直線上的也同時與相切,則稱的一個“反演圓”

(。┊(dāng)時,求證:的半徑為定值;

(ⅱ)在(ⅰ)的條件下,已知均與外切,與內(nèi)切,且的圓心為,求證:若的“反演圓”相切,則也相切。

查看答案和解析>>

同步練習(xí)冊答案