(本小題滿分12分)

有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其切割、焊接成一個(gè)長(zhǎng)方體無蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識(shí)作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高是小正方形的邊長(zhǎng).

(1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體容器的最大容積V1;

(2)請(qǐng)你判斷上述方案是否是最佳方案,若不是,請(qǐng)?jiān)O(shè)計(jì)一種新方案,使材料浪費(fèi)最少,且所得長(zhǎng)方體容器的容積V2>V1.

 

 

【答案】

解:(1)設(shè)切去正方形邊長(zhǎng)為x,則焊接成的長(zhǎng)方體的底面邊長(zhǎng)為4-2x,高為x,

∴V1=(4-2x)2x=4(x3-4x2+4x)(0<x<2).                                2分

V′1=4(3x2-8x+4)=12(x-)(x-2).                                         4分

當(dāng)0<x<時(shí),V′1>0;當(dāng)<x<2時(shí),V′1<0.                               6分

∴當(dāng)x=時(shí),V1取最大值.                                            8分

(2)重新設(shè)計(jì)方案如下:

如圖①,在正方形的兩個(gè)角處各切下一個(gè)邊長(zhǎng)為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長(zhǎng)方體容器.

新焊長(zhǎng)方體容器底面是一長(zhǎng)方形,長(zhǎng)為3,寬為2,此長(zhǎng)方體容積V2=3×2×1=6,顯然V2>V1.故第二種方案符合要求.                                             12分

V1.故第二種方案符合要求.                                             12分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案