過點(diǎn)P(1,1)的直線將圓形區(qū)域{(x,y)|x2+y2≤9}分成兩部分,使得兩部分的面積相差最大,則該直線的方程是( 。
A、x+y-2=0
B、y-1=0
C、x-y=0
D、x+3y-4=0
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:根據(jù)題意畫出相應(yīng)的圖形,由題意得到當(dāng)直線CD與過P的直徑AB垂直時(shí),將圓形區(qū)域分成兩部分的面積相差最大,求出直徑AB所在直線方程的斜率,確定出直線CD的斜率,確定出CD的方程,即為所求.
解答: 解:根據(jù)題意畫出圖形,如圖所示,
當(dāng)直線CD與過P的直徑AB垂直時(shí),將圓形區(qū)域分成兩部分的面積相差最大,
∵圓心O(0,0),P(1,1),
∴直徑AB所在直線方程的斜率為
1-0
1-0
=1,
∴直線CD斜率為-1,方程為y-1=-(x-1),即x+y-2=0.
故選A
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,根據(jù)題意得出直線CD與過P的直徑AB垂直時(shí),將圓形區(qū)域分成兩部分的面積相差最大是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在[-6,9]內(nèi)任取一個(gè)實(shí)數(shù)m,設(shè)f(x)=-x2+mx+m,則函數(shù)f(x)的圖象與x軸有公共點(diǎn)的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

流程如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( 。
A、f(x)=x2
B、f(x)=
1
x
C、f(x)=lnx+2x-6
D、f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0
(1)若a是從0,1,2,3四個(gè)數(shù)中任意取一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任意取一個(gè),求上述方程有實(shí)根的概率;
(2)若a∈[0,2],b∈[0,1],求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程ax2+2x+1=0有且只有一個(gè)負(fù)根,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長(zhǎng)為1的正方形OABC中任取一點(diǎn)P,則點(diǎn)P恰好落在正方形與曲線y=
x
圍成的區(qū)域內(nèi)(陰影部分)的概率為( 。
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C的方程為
x=2pt2
y=2pt
(p>0,t為參數(shù)),當(dāng)t∈[-1,2]時(shí),曲線C的端點(diǎn)為A,B,設(shè)F是曲線C的焦點(diǎn),且S△AFB=14,求P的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是公比為q的等比數(shù)列,它的前n項(xiàng)和為Sn,若
lim
n→∞
Sn=2,則此等比數(shù)列的首項(xiàng)a1的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過函數(shù)y=x 
1
2
(0<x<1)圖象上一點(diǎn)M作切線l與y軸和直線y=1分別交于點(diǎn)P、Q,點(diǎn)N(0,1),則△PQN面積的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案