如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,側棱SA底面ABCD,且SA=2,AD=DC=1

(1)若點E在SD上,且證明:平面;
(2)若三棱錐S-ABC的體積,求面SAD與面SBC所成二面角的正弦值的大小

(1)詳見解析;(2)

解析試題分析:(1)由于側棱底面,側面從而,又因為,所以平面(2) 由三棱錐S-ABC的體積易得由于、兩兩互相垂直,故可以為原點建立空間直角坐標系,利用向量便可得面SAD與面SBC所成二面角的正弦值的大小
試題解析:(1)證明:側棱底面,底面
                                               1分
底面是直角梯形,垂直于
,又
側面,                           3分
側面

平面                     5分
(2) 連結,底面是直角梯形,垂直于,
,,設,則,三棱錐,                                7分
如圖建系,

,由題意平面的一個法向量為,不妨設平面的一個法向量為,,則由

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體中,在棱上.

(1)求異面直線所成的角;
(2)若二面角的大小為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面平面,是以為斜邊的等腰直角三角形,分別為,,的中點,,.

(1)設的中點,證明:平面;
(2)證明:在內(nèi)存在一點,使平面,并求點,的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中點.

(1)求證:平面BED⊥平面SAB.
(2)求直線SA與平面BED所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,矩形所在的平面和平面互相垂直,等腰梯形中,=2,,,,分別為的中點,為底面的重心.

(1)求證:∥平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐S-ABCD中,ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E為CD上一點,且CE=3DE.

(1)求證:AE⊥平面SBD.
(2)M,N分別為線段SB,CD上的點,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,確定M,N的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,,底面為梯形,,,且,.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體ABCD­A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分別是棱AB,BC上的點,且EBFB=1.
 
(1)求異面直線EC1FD1所成角的余弦值;
(2)試在面A1B1C1D1上確定一點G,使DG⊥平面D1EF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,點M在線段EC上且不與E、C垂合.

(1)當點M是EC中點時,求證:BM//平面ADEF;
(2)當平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐M—BDE的體積.

查看答案和解析>>

同步練習冊答案