已知f(x)=
bx+1
2x+a
,其中a,b為常數(shù),且ab≠2.若f(x)•f(
1
x
)=k為常數(shù),則k的值為
 
分析:根據(jù)題意分別得到f(x)和f(
1
x
)的解析式,算出f(x)•f(
1
x
)化簡后等于k,根據(jù)合分比性質(zhì)得到k即可;
解答:解:由題可知:f(x)•f(
1
x
)=
bx+1
2x+a
b
x
+1
2
x
+a
=
bx2+(b2+1)x+b
2ax2+(a2+4)x+2a
=k
則根據(jù)合分比性質(zhì)得:
b
2a
=
b2+1
a2+4
=
b2
a2
=
1
4
=k,
即k=
1
4

故答案為:
1
4
點評:此題考查學生理解函數(shù)的定義,以及合分比性質(zhì)的靈活運用,難度中檔.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
bx+1
2x+a
,a,b為常數(shù),且ab≠2.
(1)若f(x)•f(
1
x
)=k,求常數(shù)k的值.
(2)若f[f(1)]=
k
2
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=bx+1為x的一次函數(shù),b為不等于1的常數(shù),且g(n)=
1????(n=0)
f[g(n-1)]  (n≥1)
,設(shè)an=g(n)-g(n-1) (n∈N*),則數(shù)列{an}是( 。
A、等差數(shù)列B、等比數(shù)列
C、遞增數(shù)列D、遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年浙江省寧波市鎮(zhèn)海中學高三(上)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

已知f(x)=bx+1為x的一次函數(shù),b為不等于1的常數(shù),且g(n)=,設(shè)an=g(n)-g(n-1) (n∈N*),則數(shù)列{an}是( )
A.等差數(shù)列
B.等比數(shù)列
C.遞增數(shù)列
D.遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省高考數(shù)學一輪復(fù)習單元試卷06:等差數(shù)列與等比數(shù)列(解析版) 題型:選擇題

已知f(x)=bx+1為x的一次函數(shù),b為不等于1的常數(shù),且g(n)=,設(shè)an=g(n)-g(n-1) (n∈N*),則數(shù)列{an}是( )
A.等差數(shù)列
B.等比數(shù)列
C.遞增數(shù)列
D.遞減數(shù)列

查看答案和解析>>

同步練習冊答案