已知兩點,動點不在軸上,且滿足其中為原點,則點的軌跡方程是(    )

A.   B.

C.   D.

 

【答案】

C

【解析】解:因為

兩點,動點不在軸上,且滿足

故點P在角APB的角平分線上,則利用PA:PB=AO:OB

=2:1,設(shè)點P(x,y),則利用關(guān)系式可知

化簡可得為

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點F(1,0),動點P在y軸(不含原點)上運動,過點P作線段PM交x軸于點M,使
MP
PF
=0
;再延長線段MP到點N,使
MP
=
PN

(Ⅰ)求動點N的軌跡C的方程;
(Ⅱ)直線L與軌跡C交于A、B兩點,如果
OA
OB
=-4且|
AB
|=4
6
,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點,右焦點分別為A、F,右準線為m.圓D:x2+y2+x-3y-2=0.
(1)若圓D過A、F兩點,求橢圓C的方程;
(2)若直線m上不存在點Q,使△AFQ為等腰三角形,求橢圓離心率的取值范圍.
(3)在(1)的條件下,若直線m與x軸的交點為K,將直線l繞K順時針旋轉(zhuǎn)
π
4
得直線l,動點P在直線l上,過P作圓D的兩條切線,切點分別為M、N,求弦長MN的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足
HP
PM
=0
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結(jié)果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省高三第一次月考數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知定點,動點滿足: .

(I)求動點的軌跡的方程;

(II)過點的直線與軌跡交于兩點,試問在軸上是否存在定點,使得 為常數(shù).若存在,求出點的坐標;若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案