【題目】已知函數(shù) ,設(shè)F(x)=x2f(x),則F(x)是(
A.奇函數(shù),在(﹣∞,+∞)上單調(diào)遞減
B.奇函數(shù),在(﹣∞,+∞)上單調(diào)遞增
C.偶函數(shù),在(﹣∞,0)上遞減,在(0,+∞)上遞增
D.偶函數(shù),在(﹣∞,0)上遞增,在(0,+∞)上遞減

【答案】B
【解析】解:∵f(﹣x)= =﹣ =﹣f(x),
∴f(x)為奇函數(shù),
又F(x)=x2f(x),
∴F(﹣x)=(﹣x)2f(﹣x)=﹣x2f(x)=﹣F(x),
∴F(x)是奇函數(shù),可排除C,D.
又F(x)=x2f(x)= ,
∴F(x)在(﹣∞,+∞)上單調(diào)遞增,可排除A,
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 【2017江西4月質(zhì)檢】如圖,四棱錐中,側(cè)面底面, , , , ,點(diǎn)在棱上,且,點(diǎn)在棱上,且平面.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4—5:不等式選講]

已知函數(shù)fx)=–x2+ax+4,gx)=│x+1│+│x–1│.

(1)當(dāng)a=1時(shí),求不等式fx)≥gx)的解集;

(2)若不等式fx)≥gx)的解集包含[–1,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n ,n 2),這些球除顏色外全部相同。現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,……,m+n的抽屜內(nèi),其中第k次取球放入編號(hào)為k的抽屜(k=1,2,3,……,m+n).

(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;

(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(x)是x的數(shù)學(xué)期望,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個(gè)數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且b=acosc+ csinA.
(1)求角A的大;
(2)當(dāng)a=3時(shí),求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各棱長(zhǎng)都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,tanA是以﹣4為第三項(xiàng),4為第七項(xiàng)的等差數(shù)列的公差,tanB是以 為第三項(xiàng),9為第六項(xiàng)的等比數(shù)列公比,則這個(gè)三角形是( )
A.鈍角三角形
B.銳角三角形
C.等腰直角三角形
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面4米,水面寬8米.水位上升1米后,水面寬為(
A.
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案