如圖,A1(-2,0),A2(2,0)是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)端點(diǎn),M是橢圓上不同于A1,A2的點(diǎn),且MA1與MA2的斜率之積為-
3
4
,F(xiàn)(c,0)為橢圓C的右焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線MA1,MA2分別與直線x=
a2
c
相交于點(diǎn)P,Q,證明:FP⊥FQ.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:圓錐曲線中的最值與范圍問(wèn)題
分析:(Ⅰ)設(shè)M(x,y),(x≠±2),由已知條件推導(dǎo)出
y
x+2
y
x-2
=-
3
4
,由此能求出橢圓C的方程.
(Ⅱ)由橢圓C的方程為
x2
4
+
y2
3
=1
,得
a2
c
=4,F(xiàn)(1,0),設(shè)P(4,yP),Q(4,yQ),由已知條件推導(dǎo)出yP•yQ=-9,由此能證明FP⊥FQ.
解答: (Ⅰ)解:設(shè)M(x,y),(x≠±2),
kMA1=
y
x+2
,kMA2=
y
x-2
,
kMA1kMA2=-
3
4
,
y
x+2
y
x-2
=-
3
4

化簡(jiǎn),得
x2
4
+
y2
3
=1
,(x≠±2),
∵M(jìn)在橢圓上,且A1(-2,0),A2(2,0)也適合上述方程,
∴橢圓C的方程為
x2
4
+
y2
3
=1

(Ⅱ)證明:∵橢圓C的方程為
x2
4
+
y2
3
=1
,
a2
c
=4,F(xiàn)(1,0),
設(shè)P(4,yP),Q(4,yQ),
∵M(jìn)A1與MA2的斜率之積為-
3
4
,
kPA1kQA2=
yP
6
yQ
2
=-
3
4
,
解得yP•yQ=-9,
∴kFP•kFQ=
yP
3
yQ
3
=-1
,
∴FP⊥FQ.
點(diǎn)評(píng):本題考查橢圓方程的求法,考查兩直線的證明,解題時(shí)要認(rèn)真審題,注意直線斜率、橢圓性質(zhì)、直線與橢圓的位置關(guān)系等知識(shí)點(diǎn)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)空間幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、4+
2
3
π
B、4+π
C、4+2π
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,畫(huà)出莖葉圖如圖所示.
(1)指出學(xué)生乙成績(jī)的中位數(shù),并說(shuō)明如何確定一組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為派哪位學(xué)生參加,成績(jī)比較穩(wěn)定?
(3)若將頻率視為概率,請(qǐng)預(yù)測(cè)學(xué)生甲在今后一次數(shù)學(xué)競(jìng)賽中成績(jī)高于80分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面為菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,點(diǎn)E在PD上,且PE:ED=2:1.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)在棱PC上是否存在一點(diǎn)F,使得BF∥平面EAC?若存在,試求出PF的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且b2=ac,sinB=
2
sinA.
(Ⅰ)求cosB.
(Ⅱ)若△ABC的面積為
7
,求BC邊上中線的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
,橢圓上的點(diǎn)P與兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形的最大面積為1,
(1)求橢圓C的方程;
(2)若點(diǎn)Q為直線x+y-2=0上的任意一點(diǎn),過(guò)點(diǎn)Q作橢圓C的兩條切線QD、QE(切點(diǎn)分別為D、E),試證明動(dòng)直線DE恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面上,
AB1
AB2
,|
OB1
|=|
OB2
|=1,
AP
=
AB1
+
AB2
.若|
OP
|<
1
3
,則|
OA
|的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知是A、B、C直線l上的三點(diǎn),向量
OA
,
OB
OC
滿足:
OA
-[f(x)+
1
x
]•
OB
-(x-1)•
OC
=
.
0
,且對(duì)任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在實(shí)數(shù)x,使不等式|2x-1|-|2x+
3
2
|-a≤0(a∈Z)成立,則a的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案