精英家教網 > 高中數學 > 題目詳情
已知f(x)=x3+ax2-2x是奇函數,則其圖象在點(1,f(1))處的切線方程為    
【答案】分析:先根據函數為奇函數求出a的值,根據導數的幾何意義求出函數f(x)在x=1處的導數,從而求出切線的斜率,再用點斜式寫出切線方程,化成斜截式即可.
解答:解:∵f(x)=x3+ax2-2x是奇函數
∴f(-x)=-f(x)即(-x)3+ax2+2x=-x3-ax2+2x恒成立
即a=0
∴f(1)=1-2=-1
∵f'(x)=3x2-2∴f'(1)=1
∴其圖象在點(1,-1)處的切線方程為x-y-2=0
故答案為:x-y-2=0
點評:本題主要考查了函數的奇偶性,以及利用導數研究曲線上某點切線方程,同時考查了分析問題解決問題的能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函數f(x)的單調遞減區(qū)間為(
13
,1),求函數f(x)的解析式;
(2)若f(x)的導函數為f′(x),對任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲線y=f(x)在x=-1處的切線與直線2x-y-1=0平行,求a的值;
(2)當a=-2時,求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+x-2在點P處的切線與直線y=4x-1平行,則切點P的坐標是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,則f(2013)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+3x2+a(a為常數) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步練習冊答案