(2006•朝陽(yáng)區(qū)二模)如圖,已知圓C:(x-1)2+y2=r2(r>1),設(shè)M為圓C與x軸負(fù)半軸的交點(diǎn),過(guò)M作圓C的弦MN,并使它的中點(diǎn)P恰好落在y軸上.
(Ⅰ)當(dāng)r=2時(shí),求滿足條件的P點(diǎn)的坐標(biāo);
(Ⅱ)當(dāng)r∈(1,+∞)時(shí),求點(diǎn)N的軌跡G的方程;
(Ⅲ)過(guò)點(diǎn)P(0,2)的直線l與(Ⅱ)中軌跡G相交于兩個(gè)不同的點(diǎn)E、F,若
CE
CF
>0
,求直線l的斜率的取值范圍.
分析:(1)由已知得,r=2時(shí),可求得M點(diǎn)的坐標(biāo)為(-1,0),設(shè)N(x,y)聯(lián)立方程可解得MN的中點(diǎn)P坐標(biāo);
(2)設(shè)N(x,y)由已知得,先利用圓方程求得M點(diǎn)的坐標(biāo),再設(shè)P(0,b),得:r=b2+1.利用圓的方程與x+1-r=0消去r,即可得出點(diǎn)N的軌跡方程;
(3)設(shè)直線l的方程為y=kx+2,將直線的方程代入拋物線的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用向量的數(shù)量積公式即可求得k值范圍,從而解決問(wèn)題.
解答:解:(1):由已知得,r=2時(shí),可求得M點(diǎn)的坐標(biāo)為(-1,0),
設(shè)N(x,y)則
(x-1)2+y2=4
x-1=0
解得N(1,±2).
所以MN的中點(diǎn)P坐標(biāo)為(0,±1).
(2):設(shè)N(x,y)由已知得,在圓方程中令y=0,求得M點(diǎn)的坐標(biāo)為(1-r,0).
設(shè)P(0,b),則由kCPkmp=-1(或用勾股定理)得:r=b2+1.
(x-1)2+y2=r2
x+1-r=0
,消去r,
又r>1,所以點(diǎn)N的軌跡方程為y2=4x(x≠0).
(3)設(shè)直線l的方程為y=kx+2,M(x1,y1),N(x2,y2),
y=kx+2
y2=4x
,

消去y得k2x2+(4k-4)x+4=0,因?yàn)橹本l與拋物線y2=4x(x>0)相交于兩個(gè)不同的點(diǎn)M,N,
所以△=-32k+16>0,所以k<
1
2

又因?yàn)?span id="f9fvrp5" class="MathJye">
CM
CN
>0,所以(x1-1)(x2-1)+y1y2>0,
所以(k2+1)x1x2+(2k-1)(x1+x2)+5>0,得k2+12k>0,
所以k>0或k<-12,
綜上可得0<k<
1
2
或k<-12
點(diǎn)評(píng):本題是中檔題,考查動(dòng)點(diǎn)的軌跡方程的求法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•朝陽(yáng)區(qū)二模)定義運(yùn)算a*b=
a(a≤b)
b(a>b)
,例如,1*2=1,則函數(shù)f(x)=1*2x的值域是
(0,1]
(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•朝陽(yáng)區(qū)二模)lg8+3lg5=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•朝陽(yáng)區(qū)二模)滿足條件{1,2}∪M={1,2,3}的所有集合M的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•朝陽(yáng)區(qū)二模)設(shè)條件p:|x|=x;條件q:x2+x≥0,那么p是q的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•朝陽(yáng)區(qū)二模)正方體ABCD-A1B1C1D1中,E、F分別是棱C1C與BC的中點(diǎn),則直線EF與直線D1C所成角的大小是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案