【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中, , ,以為直徑的圓記為圓,圓過原點(diǎn)的切線記為,若以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)若過點(diǎn),且與直線垂直的直線與圓交于, 兩點(diǎn),求.
【答案】(1)(2)1
【解析】試題分析:(1)根據(jù), 及以為直徑的圓,可得圓心的坐標(biāo),即可求出圓的直角坐標(biāo)方程,再根據(jù), ,即可求出圓的極坐標(biāo)方程;(2)由直線與圓過原點(diǎn)的切線垂直,可得直線的傾斜角,再由直線過點(diǎn),可得直線的普通方程,即可得圓心到直線的距離,即可求出.
試題解析:(1)由題意,知圓的直徑,圓心的坐標(biāo)為,
∴圓的直角坐標(biāo)為,即,
將, 代入上式,
得到圓的極坐標(biāo)方程為.
(2)∵直線與圓過原點(diǎn)的切線垂直
∴直線的傾斜角為,斜率為,
又∵直線過點(diǎn)
∴直線的普通方程為,即,
∴圓心到直線的距離,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲乙兩輛車去同一貨場(chǎng)裝貨物,貨場(chǎng)每次只能給一輛車裝貨物,所以若兩輛車同時(shí)到達(dá),則需要有一車等待.已知甲、乙兩車裝貨物需要的時(shí)間都為20分鐘,倘若甲、乙兩車都在某1小時(shí)內(nèi)到達(dá)該貨場(chǎng),則至少有一輛車需要等待裝貨物的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道一次函數(shù)、二次函數(shù)的圖像都是連續(xù)不斷的曲線,事實(shí)上,多項(xiàng)式函數(shù)的圖像都是如此.
(1)設(shè),且,若還有,求證:;
(2)設(shè)一個(gè)多項(xiàng)式函數(shù)有奇次項(xiàng)(),求證:總能通過只調(diào)整的系數(shù),使得調(diào)整后的多項(xiàng)式一定有零點(diǎn);
(3)現(xiàn)有未知數(shù)為的多項(xiàng)式方程(其中實(shí)數(shù)待定),甲、乙兩人進(jìn)行一個(gè)游戲:由甲開始交替確定中的一個(gè)數(shù)(每次只能去確定剩余還未定的數(shù)),當(dāng)甲確定最后一個(gè)數(shù)后,若方程由實(shí)數(shù)解,則乙勝,反之甲勝,問:乙有必勝的策略嗎?若有,請(qǐng)給出策略并證明,若無,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格.某校有800 名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖所示.
(Ⅰ)求初賽分?jǐn)?shù)在區(qū)間內(nèi)的頻率;
(Ⅱ)求獲得復(fù)賽資格的人數(shù);
(Ⅲ)據(jù)此直方圖估算學(xué)生初賽成績(jī)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過定點(diǎn),且在y軸上截得的弦MN的長(zhǎng)為4.
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)過點(diǎn)的直線與曲線C交于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)E(,0),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線的焦點(diǎn).
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點(diǎn),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).
①若直線的斜率為,求四邊形面積的最大值;
②當(dāng)運(yùn)動(dòng)時(shí),滿足,試問直線的斜率是否為定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有六支足球隊(duì)參加單循環(huán)比賽(即任意兩支球隊(duì)只踢一場(chǎng)比賽),第一周的比賽中,各踢了場(chǎng), 各踢了場(chǎng), 踢了場(chǎng),且隊(duì)與隊(duì)未踢過, 隊(duì)與隊(duì)也未踢過,則在第一周的比賽中, 隊(duì)踢的比賽的場(chǎng)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:
①“若,則”的否命題是“若,則”;
②“”是“”的必要非充分條件;
③“”是“或”的充分非必要條件;
④“”是“且”的充要條件.
其中正確的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表如下,頻率分布直方圖如圖:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30)內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com