在等差數(shù)列{an}中,a9=
1
2
a12+6
,則數(shù)列{an}的前11項(xiàng)和S11等于
 
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件,利用等差數(shù)列的通項(xiàng)公式推導(dǎo)出a1+5d=12,由此利用等差數(shù)列的前n項(xiàng)和公式能求出S11
解答: 解:∵等差數(shù)列{an}中,a9=
1
2
a12+6
,即2a9=a12+12,
∴2(a1+8d)=a1+11d+12,
∴a1+5d=12,
∴S11=
11
2
(a1+a11
=
11
2
(2a1+10d)
=11(a1+5d)
=11×12
=132.
故答案為:132.
點(diǎn)評(píng):本題考查數(shù)列的前11項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要熟練掌握等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=4,
e
為單位向量,當(dāng)
a
,
e
的夾角為
3
時(shí),
a
+
e
a
-
e
上的投影為( 。
A、5
B、
15
4
C、
15
13
13
D、
5
21
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為2的菱形,∠BAD=60°,高為1,過(guò)底邊AB作一截面ABEF,若BE=2
(1)求二面角E-AB-C的大;
(2)求截面ABEF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)的圖象在點(diǎn)P(3,f(3))處的切線方程為y=x+2,f′(x)為f(x)的導(dǎo)函數(shù),則f(3)+f′(3)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABEF和正方形ABCD有公共邊AB,它們所在平面成60°的二面角,AB=CB=2a,BE=a,則DE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n為不重合的兩條直線,α,β為不重合的兩個(gè)平面,給出下列命題:
①若m∥α,m∥β,則α∥β;    
②若l∥α,m∥β,α∥β,則l∥m;
③若m⊥α,n⊥α,則m∥n;      
④若m⊥n,m⊥α,則n⊥α.
則其中所有真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法不正確的是( 。
A、所有的對(duì)立事件都是互斥事件
B、先后拋擲兩枚大小一樣的硬幣,兩枚都出現(xiàn)反面的概率是
1
3
C、事件“直線y=k(x+1)過(guò)點(diǎn)(-1,0)”是必然事件
D、某紅綠燈路口,紅燈時(shí)間為30秒,黃燈時(shí)間為5秒,綠燈時(shí)間為45秒,當(dāng)你到這個(gè)路口時(shí),看到黃燈的概率是
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中的假命題是( 。
A、?x∈R,2x-1>0
B、?x∈R,lgx<1
C、?x∈N+,(x-1)2>0
D、?x∈R,tanx=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
2
,∠ABC=90°(如圖1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角為θ(如圖2)
(1)若θ=
π
2
,求證:CD⊥AB;
(2)是否存在適當(dāng)θ的值,使得AC⊥BD,若存在,求出θ的值,若不存在說(shuō)明理由;
(3)若θ=
π
2
,取BD中點(diǎn)M,BC中點(diǎn)N,P、Q分別為線段AB與DN上一點(diǎn),使得
AP
PB
=
NQ
QD
=λ(λ∈R)
.令PQ與BD和AN所成的角分別為θ1和θ2.求sinθ1+sinθ2的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案