△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知ac=b2-a2,A=,求B.

解析試題分析:首先利用余弦定理將表達式ac=b2-a2進行化簡為b-c=a,然后借助正弦定理將邊轉(zhuǎn)化角,利用輔助角公式進行化簡求值.
試題解析:由余弦定理得,a2-b2=c2-2bccosA,
將已知條件代入上式,得ac=bc-c2,則b-c=a,
再由正弦定理, sinB-sinC=sin.                         4分
又sinC=sin(-B)=cosB+sinB,
所以sinB-cosB=,即sin(B-)=.                       10分
因為-<B-,所以B-,即B=.              12分
考點:1.正弦定理和余弦定理;2.三角化簡.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

中,角的對邊分別為.已知.
(I)求;
(II)若,的面積為,且,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,在△ABC中,∠ABC=90°,AB=,BC=1,P為△ABC內(nèi)一點,∠BPC=90°

(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三個內(nèi)角的對邊分別為,向量,且的夾角為.
(1)求角的值;
(2)已知,的面積,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

凸四邊形中,其中為定點,為動點,滿足.
(1)寫出的關(guān)系式;
(2)設(shè)的面積分別為,求的最大值,以及此時凸四邊形的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△ABC中,角A,B,C的對邊分別為a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2,△ABC的面積為2,求b+c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,有兩座建筑物AB和CD都在河的對岸(不知 道它們的高度,且不能到達對岸),某人想測量兩 座建筑物尖頂A、C之間的距離,但只有卷尺和測 角儀兩種工具.若此人在地面上選一條基線EF,用 卷尺測得EF的長度為a,并用測角儀測量了一些角度:,,,,請你用文字和公式寫出計算A、C之間距離的步驟和結(jié)果.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)的內(nèi)角所對的邊分別為,且,。
(Ⅰ)求的值;
(Ⅱ)求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,海船甲位于島嶼A的南偏西60°方向的B處,且與島嶼A相距2海里,漁船乙以10海里/小時的速度從島嶼A出發(fā)沿正北方向航行,若漁船甲同時從B處出發(fā)沿北偏東的方向追趕漁船乙,剛好用2小時追上。

①求漁船甲的速度;
②求的值。

查看答案和解析>>

同步練習冊答案