【題目】設,為不同的兩點,直線,,以下命題中正確的序號為__________.
(1)不論為何值,點N都不在直線上;
(2)若,則過M,N的直線與直線平行;
(3)若,則直線經(jīng)過MN的中點;
(4)若,則點M、N在直線的同側(cè)且直線與線段MN的延長線相交.
【答案】(1)(2)(3)(4)
【解析】
利用分母不等于零判斷(1),利用斜率相等判斷(2);利用中點坐標滿足方程判斷(3);根據(jù),以及M、N在直線的距離不同判斷(4).
(1)因為,所以不在直線上,正確;
(2)時,由可得,化為,即直線的斜率為,所以過M,N的直線與直線平行,時,過M,N的直線與直線都與軸平行,綜上可得(2)正確;
(3)時,化為,即直線經(jīng)過MN的中點,正確;
(4)可得,可得M、N在直線的同側(cè),進而得,M、N在直線的距離不同,直線與線段MN的延長線相交,正確.
即正確命題的序號為(1)(2)(3)(4),
故答案為(1)(2)(3)(4).
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在邊長為4的菱形中,,于點,將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)求二面角的余弦值;
(3)判斷在線段上是否存在一點,使平面平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將個不同的紅球和個不同的白球,放入同一個袋中,現(xiàn)從中取出個球.
(1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;
(2)取出一個紅球記分,取出一個白球記分,若取出個球的總分不少于分,則有多少種不同的取法;
(3)若將取出的個球放入一箱子中,記“從箱子中任意取出個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個紅球并且恰有一次取到個白球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面上兩點M(-5,0)和N(5,0),若直線上存在點P使|PM|-|PN|=6,則稱該直線為“單曲型直線”,下列直線中是“單曲型直線”的是( )
①; ②y=2; ③; ④.
A.①③ B. ③④ C.②③ D.①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學生參加社會實踐活動,對某公司1月份至6月份銷售某種配件的銷售量及銷售單價進行了調(diào)查,銷售單價x和銷售量y之間的一組數(shù)據(jù)如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關(guān)系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程,其中,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.
(1)設圓求過(2,0)的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點(0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;
(3)是否存在點,使過的任意兩條互相垂直的直線分別關(guān)于相應兩圓的距離比始終相等?若存在,求出相應的點點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位為促進職工業(yè)務技能提升,對該單位120名職工進行一次業(yè)務技能測試,測試項目共5項.現(xiàn)從中隨機抽取了10名職工的測試結(jié)果,將它們編號后得到它們的統(tǒng)計結(jié)果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).
表1:
編號\測試項目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規(guī)定:每項測試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項的項數(shù)的頻率代替每名職工合格項的項數(shù)的概率.
①設抽取的這10名職工中,每名職工測試合格的項數(shù)為,根據(jù)上面的測試結(jié)果統(tǒng)計表,列出的分布列,并估計這120名職工的平均得分;
②假設各名職工的各項測試結(jié)果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測試中,測試難度的計算公式為,其中為第項測試難度,為第項合格的人數(shù),為參加測試的總?cè)藬?shù).已知抽取的這10名職工每項測試合格人數(shù)及相應的實測難度如下表(表2):
表2:
測試項目 | 1 | 2 | 3 | 4 | 5 |
實測合格人數(shù) | 8 | 8 | 7 | 7 | 2 |
定義統(tǒng)計量,其中為第項的實測難度,為第項的預測難度().規(guī)定:若,則稱該次測試的難度預測合理,否則為不合理,測試前,預估了每個預測項目的難度,如下表(表3)所示:
表3:
測試項目 | 1 | 2 | 3 | 4 | 5 |
預測前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測試的難度預估是否合理.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知與的夾角為,,,設,.
(1)當時,求與的夾角大。
(2)是否存在實數(shù),使得與的夾角為鈍角,若存在求出的取值范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com