【題目】已知為常數(shù), ,函數(shù), (其中是自然對數(shù)的底數(shù)).
(1)過坐標原點作曲線的切線,設切點為,求證: ;
(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
【答案】(1) ;(2) .
【解析】試題分析:(1)先對函數(shù)求導, ,可得切線的斜率,即,由是方程的解,且在上是增函數(shù),可證;(2)由, ,先研究函數(shù),則,由在上是減函數(shù),可得,通過研究的正負可判斷的單調(diào)性,進而可得函數(shù)的單調(diào)性,可求出參數(shù)范圍.
試題解析:(1)(),
所以切線的斜率,
整理得,顯然, 是這個方程的解,
又因為在上是增函數(shù),
所以方程有唯一實數(shù)解,
故.
(2), ,
設,則,
易知在上是減函數(shù),從而.
①當,即時, , 在區(qū)間上是增函數(shù),
∵,∴在上恒成立,即在上恒成立.
∴在區(qū)間上是減函數(shù),所以滿足題意.
②當,即時,設函數(shù)的唯一零點為,
則在上遞增,在上遞減,
又∵,∴,
又∵,
∴在內(nèi)有唯一一個零點,
當時, ,當時, .
從而在遞減,在遞增,與在區(qū)間上是單調(diào)函數(shù)矛盾.
∴不合題意.綜上①②得, .
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)定義在R上的奇函數(shù),且在(﹣∞,0)上是增函數(shù),又f(2)=0,則不等式xf(x+1)<0的解集為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】不等式2x2﹣x﹣3>0解集為( )
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若不等式x2﹣ax+b<0的解集為(1,2),則不等式 < 的解集為( )
A.( ,+∞)
B.(﹣∞,0)∪( ,+∞)
C.( ,+∞)
D.(﹣∞,0)∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式.
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,被抽取學生的成績均不低于160分,且低于185分,如圖是按成績分組得到的頻率分布直方圖.
(1)為了能選拔出優(yōu)秀的學生,該校決定在筆試成績較高的第3組、第4組、第5組中用分層抽樣的方法抽取6名學生進入第二輪面試,求第3,4,5組每組各抽取多少名學生進入第二輪面試;
(2)在(1)的前提下,學校決定在6名學生中隨機抽取2名學生由考官A面試,求第4組至少有一名學生被考官A面試的概.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】使函數(shù)y=sin(2x+θ)+ cos(2x+θ)為奇函數(shù),且在[0, ]上是減函數(shù)的θ一個值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設M={x| },N={x|x2+(a﹣8)x﹣8a≤0},命題p:x∈M,命題q:x∈N.
(1)當a=﹣6時,試判斷命題p是命題q的什么條件;
(2)求a的取值范圍,使命題p是命題q的一個必要但不充分條件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com