(本題滿分16分)
已知有窮數(shù)列共有項(xiàng)(整數(shù)),首項(xiàng),設(shè)該數(shù)列的前項(xiàng)和為,且其中常數(shù)⑴求的通項(xiàng)公式;⑵若,數(shù)列滿足
求證:;
⑶若⑵中數(shù)列滿足不等式:,求的最大值.

 ⑶整數(shù)的最大值為7。

解析試題分析:⑴   
兩式相減得  
當(dāng)時(shí)則,數(shù)列的通項(xiàng)公式為
⑵把數(shù)列的通項(xiàng)公式代入數(shù)列的通項(xiàng)公式,可得

  
⑶數(shù)列單調(diào)遞增,且
則原不等式左邊即為

  可得因此整數(shù)的最大值為7。
考點(diǎn):本題主要考查數(shù)列的的基礎(chǔ)知識(shí),簡(jiǎn)單不等式的解法。
點(diǎn)評(píng):中檔題,本解答從研究的關(guān)系入手,確定得到通項(xiàng)公式,從而進(jìn)一步明確證明了!胺纸M求和法”、“裂項(xiàng)相消法”、“錯(cuò)位相消法”是高考常?嫉綌(shù)列求和方法。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,且
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
在數(shù)列中,成等差數(shù)列,成等比數(shù)列
(1)求;
(2)猜想的通項(xiàng)公式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
已知數(shù)列滿足
(1)設(shè),證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為滿足:(為常數(shù),且)
(1)若,求數(shù)列的通項(xiàng)公式
(2)設(shè),若數(shù)列為等比數(shù)列,求的值.
(3)在滿足條件(2)的情形下,設(shè),數(shù)列項(xiàng)和為,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
正項(xiàng)單調(diào)數(shù)列的首項(xiàng)為,時(shí),,數(shù)列對(duì)任意均有
(1)求證:數(shù)列是等差數(shù)列;
(2)已知,數(shù)列滿足,記數(shù)列的前項(xiàng)和為,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(理)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無(wú)窮等比數(shù)列的子數(shù)列問(wèn)題. 為此,他任取了其中三項(xiàng).
(1) 若成等比數(shù)列,求之間滿足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;
(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫出一個(gè)正確命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知數(shù)列的首項(xiàng),,….
(Ⅰ)證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案