已知f(x)=ax3+bx-4其中a,b為常數(shù),若f(-2)=7,則f(2)的值等于( 。
A、15B、-7C、14D、-15
考點:函數(shù)的值
專題:函數(shù)的性質及應用
分析:由已知得f(-2)=-8a-2b-4=7,從而-8a-2b=11,由此能求出f(2)=8a+2b-4=-15.
解答: 解:∵f(x)=ax3+bx-4,其中a,b為常數(shù),
f(-2)=-8a-2b-4=7,
∴-8a-2b=11,
∴f(2)=8a+2b-4=-15.
故選:D.
點評:本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-2x+2在區(qū)間[0,m]上的最大值為2,最小值為1,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題 p:?x0∈R,x02+2ax0-a=0;命題q:?x∈R,ax2+4x+a≥-2x2+1.如果命題“p∨q為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
3x3+2x+2
,x∈(-∞,1)
(x+x-1)(x2+x-2-1),x∈(1,+∞)
,則f[f(0)]=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“?x>0,x+1>
x
”的否定是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,1)
,
b
=(1,-3)
,若
c
=
a
+2
b
,
d
=2
a
-x
b
,且
c
d
,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x
2-x
+lg(2x+1)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥AB,BD=
1
2
AE=2,點O、M分別為CE、AB的中點.
(1)求證:OD∥平面ABC;
(2)求直線CD和平面ODM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:正方體ABCD-A1B1C1D1中,AB1與C1B所成的角為(  )
A、
3
B、
π
3
C、
π
6
D、
π
4

查看答案和解析>>

同步練習冊答案