【題目】已知函數(shù) 的最小正周期為
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

【答案】
(1)解:由已知, ,ω=2,

所以 ,

,解得 ,

所以函數(shù)的定義域?yàn)?


(2)解:由 ,

解得 ,

所以函數(shù)f(x)的單調(diào)遞增區(qū)間為 ,其中k∈Z.


【解析】(1)根據(jù)正切函數(shù)的周期公式求出函數(shù)的表達(dá)式,即可求函數(shù)f(x)的定義域;(2)根據(jù)正切函數(shù)的單調(diào)性即可求函數(shù)f(x)的單調(diào)區(qū)間.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家擴(kuò)大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷獲得,經(jīng)調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元滿足為常數(shù)).如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(成產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).

(1)求常數(shù),并將該廠家2016年該產(chǎn)品的利潤萬元表示為年促銷費(fèi)用萬元的函數(shù);

(2)該廠家2016年的年促銷費(fèi)用投入多少萬元時,廠家利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),求:

(Ⅰ)過點(diǎn)與原點(diǎn)距離為2的直線的方程;

(Ⅱ)過點(diǎn)與原點(diǎn)距離最大的直線的方程,最大距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 , 是坐標(biāo)原點(diǎn), 分別為其左右焦點(diǎn), , 是橢圓上一點(diǎn), 的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于兩點(diǎn),且

(i)求證: 為定值;

(ii)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:向量 =(1,﹣3), =(﹣2,m),且 ⊥( ).
(1)求實(shí)數(shù)m的值;
(2)當(dāng)k + 平行時,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為得到函數(shù)y=sin(2x+ )的圖象,只需將函數(shù)y=sin2x的圖象(
A.向右平移 長度單位
B.向左平移 個長度單位
C.向右平移個 長度單位
D.向左平移 長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測試,學(xué)校從測試合格的男、女生中各隨機(jī)抽取100人的成績進(jìn)行統(tǒng)計分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.

(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) = .

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)有兩個零點(diǎn).

(1)求滿足條件的最小正整數(shù)的值;

(2)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)證明: ,直線都不是曲線的切線;

(Ⅱ)若,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案