求曲線的斜率等于4的切線方程.
設切點為,則
,∴,即,∴
時,,故切點P的坐標為(1,1).
∴所求切線方程為
 
導數(shù)反映了函數(shù)在某點處的變化率,它的幾何意義就是相應曲線在該點處切線的斜率,由于切線的斜率已知,只要確定切點的坐標,先利用導數(shù)求出切點的橫坐標,再根據切點在曲線上確定切點的縱坐標,從而可求出切線方程
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(I)求函數(shù)的單調區(qū)間;
(II)若函數(shù)的取值范圍;
(III)當

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明上的單調性;
(2)若存在,使,則稱為函數(shù)的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求的值;
(3)若上恒成立 , 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在某種工業(yè)品的生產過程中,每日次品數(shù)與每日產量的函數(shù)關系式為,該工廠售出一件正品可獲利元,但生產一件次品就損失元,為了獲得最大利潤,日產量應定為多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

學校食堂改建一個開水房,計劃用電爐或煤炭燒水,但用煤時也要用電鼓風及時排氣,用煤燒開水每噸開水費為元,用電爐燒開水每噸開水費為元,;其中為每噸煤的價格(單位:元),為每百度電的價格(單位:元),如果燒煤時的費用不超過用電爐時的費用,則仍用原備的鍋爐燒水,否則就用電爐燒水.
(1)如果兩種方法燒水費用相同,試將每噸煤的價格表示為每百度電價的函數(shù);
(2)如果每百度電價不低于60元,則用煤燒水時每噸煤的最高價格是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若x=2處取得極小值-2,求的單調區(qū)間;
(2)令的解集是A,且A∪(0,1)=(-∞,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題6分)已知函數(shù)。
(1)求在處的切線方程;
(2)求該切線與坐標軸所圍成的三角形面積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

  在處可導,則           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=--2在點(-1,)處切線的傾斜角為(    )
A  。隆   。谩   D  

查看答案和解析>>

同步練習冊答案