已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對(duì)應(yīng)值表:
x123
f(x)136.13615.552-3.92
x456
f(x)10.88-52.488-232.064
求函數(shù)f(x)含有零點(diǎn)的區(qū)間.
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)零點(diǎn)的判斷條件,判斷區(qū)間符號(hào)相反即可得到結(jié)論.
解答: 解:由表格知f(2)>0,f(3)<0,f(4)>0,f(5)<0,
∴f(2)f(3)<0,f(3)f(4)<0,f(4)f(5)<0
故零點(diǎn)分布的區(qū)間應(yīng)是(2,3),(3,4),(4,5).
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)判斷條件的應(yīng)用,根據(jù)根的存在定理是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱BB1⊥底面ABC,∠BAC=90°,AB=AC=AA1=2,且E是BC中點(diǎn).
(I)求錐體A1-B1C1EB的體積;
(Ⅱ)求證:B1C⊥AC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,a=3,b=5,
AC
CB
=
15
2

(1)求角C的值;  
(2)求sin(A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

作出下列函數(shù)的圖象并求出其值域.
(1)y=
1
x
,0<x<1
x,   x≥1
;
(2)y=-x2+2x,x∈[-2,2];
(3)y=|x+1|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線 C:x2=2py(p>0)的焦點(diǎn)為F,過(guò)點(diǎn)F的直線l交拋物線C于A,B兩點(diǎn),且拋物線C在A,B兩點(diǎn)處的切線相交于點(diǎn)M.
(Ⅰ)若△MAB面積的最小值為4,求p的值;
(Ⅱ)在(Ⅰ)的條件下,若△MAB的三邊長(zhǎng)成等差數(shù)列,求此時(shí)點(diǎn)M到直線AB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)圓x2+2x+y2=0的圓心C,且與直線x+y=0垂直的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知梯形ABCD中AD∥BC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE=x.沿EF將梯形AEFD翻折,
使平面AEFD⊥平面EBCF(如圖).G是BC的中點(diǎn).
(1)當(dāng)x=2時(shí),求證:BD⊥EG;
(2)當(dāng)x變化時(shí),求三棱錐D-BCF體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

偶函數(shù)f(x)在(0,+∞)上為增函數(shù),若x1<0,x2>0,且|x1|>|x2|,則f(x1)與f(x2)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(-4,3),
b
=(-3,4),
b
a
方向上的投影是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案