f(x)=x·(1-x2)在[0,1]上的最大值為

[  ]
A.

B.

C.

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:杭州第二中學(xué)2005學(xué)年第一學(xué)期高一數(shù)學(xué)期末試卷 題型:044

已知f(x)=(x-1)2,數(shù)列{an}是首項(xiàng)為a1,公差為d的等差數(shù)列;{bn}是首項(xiàng)為b1,公比為q(q∈R且q≠1)的等比數(shù)列,且滿足a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1).

(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(Ⅱ)若存在cn=an·bn(n∈N*),試求數(shù)列{cn}的前n項(xiàng)和;

(Ⅲ)是否存在數(shù)列{dn},使得對(duì)一切大于1的正整數(shù)n都成立,若存在,求出{dn};若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考零距離 二輪沖刺優(yōu)化講練 數(shù)學(xué) 題型:038

已知f(x)=(x-1)2,g(x)=4(x-1),數(shù)列f(an)滿足a1=2,(an+1-an)g(an)+f(an)=0.

(1)

是否存在常數(shù)c,使得數(shù)列{an+c}成等比數(shù)列?并證明你的結(jié)論.

(2)

設(shè)bn=3f(an)-[g(an+1)]2.,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省綏濱縣職教中心2012屆高三第三次月考數(shù)學(xué)文科試題 題型:013

設(shè)函數(shù)f(x)=x-lnx(x>0),則y=f(x)

[  ]
A.

在區(qū)間(,1),(1,e)內(nèi)均有零點(diǎn)

B.

在區(qū)間(,1),(1,e)內(nèi)均無零點(diǎn)

C.

在區(qū)間(,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無零點(diǎn)

D.

在區(qū)間(,1)內(nèi)無零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x-lnx(x>0),則yf(x)(  )

A.在區(qū)間(,1),(1,e)內(nèi)均有零點(diǎn)

B.在區(qū)間(,1),(1,e)內(nèi)均無零點(diǎn)

C.在區(qū)間(,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無零點(diǎn)

D.在區(qū)間(,1)內(nèi)無零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x-lnx(x>0),則yf(x)                               (  )

A.在區(qū)間(,1),(1,e)內(nèi)均有零點(diǎn)

B.在區(qū)間(,1),(1,e)內(nèi)均無零點(diǎn)

C.在區(qū)間(,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無零點(diǎn)

D.在區(qū)間(,1)內(nèi)無零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案