【題目】某校為了了解學生對電子競技的興趣,從該校高二年級的學生中隨機抽取了人進行檢查,已知這人中有名男生對電子競技有興趣,而對電子競技沒興趣的學生人數(shù)與電子競技競技有興趣的女生人數(shù)一樣多,且女生中有的人對電子競技有興趣.
在被抽取的女生中與名高二班的學生,其中有名女生對電子產(chǎn)品競技有興趣,先從這名學生中隨機抽取人,求其中至少有人對電子競技有興趣的概率;
完成下面的列聯(lián)表,并判斷是否有的把握認為“電子競技的興趣與性別有關(guān)”.
有興趣 | 沒興趣 | 合計 | |
男生 | |||
女生 | |||
合計 |
參考數(shù)據(jù):
參考公式:
【答案】;列聯(lián)表見解析,沒有.
【解析】
(1)計算出從名學生中隨機抽取人的可能,再計算出抽到的人中至少有人對電子競技有興趣的可能,利用古典概型公式即得答案;
(2)先填寫列聯(lián)表,然后計算,與比較大小即可得到答案.
從名學生中隨機抽取人,共有種不同的抽取方案;抽到的人中至少有人對電子競技有興趣的方案數(shù)有:種
抽取人中至少有人對電子競技有興趣的概率為.
設(shè)對電子競技沒興趣的學生人數(shù)為,
對電子競技沒興趣的學生人數(shù)與對電子競技有興趣的女生人數(shù)一樣多
由題,解得.
又女生中有的人對電子競技有興趣,
女生人數(shù)為
男生人數(shù)為,其中有人對電子競技沒興趣
得到下面列聯(lián)表
沒用的把握認為“對電子競技的興趣與性別有關(guān)”.
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)若是的兩個不同零點,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.
(2)設(shè),函數(shù),存在個零點.
(i)求的取值范圍;
(ii)設(shè)分別是這個零點中的最小值與最大值,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),
(1)求實數(shù)的值;
(2)如果對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校將甲、乙等6名新招聘的老師分配到4個不同的年級,每個年級至少分配1名教師,且甲、乙兩名老師必須分到同一個年級,則不同的分法種數(shù)為______
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)市場調(diào)查,新街口某新開業(yè)的商場在過去一個月內(nèi)(以30天計),顧客人數(shù)(千人)與時間(天)的函數(shù)關(guān)系近似滿足(),人均消費(元)與時間(天)的函數(shù)關(guān)系近似滿足
(1)求該商場的日收益(千元)與時間(天)(, )的函數(shù)關(guān)系式;
(2)求該商場日收益的最小值(千元).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司計劃在甲、乙兩座城市共投資240萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資80萬元,由前期市場調(diào)研可知:甲城市收益與投入(單位:萬元)滿足,乙城市收益與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當投資甲城市128萬元時,求此時公司總收益;
⑵試問如何安排甲、乙兩個城市的投資,才能使公司總收益最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校參加夏令營的同學有3名男同學和3名女同學,其所屬年級情況如下表:
高一年級 | 高二年級 | 高三三年級 | |
男同學 | |||
女同學 |
現(xiàn)從這6名同學中隨機選出2人參加知識競賽(每人被選到的可能性相同)
(1)用表中字母寫出這個試驗的樣本空間;
(2)設(shè)為事件“選出的2人來自不同年級且恰有1名男同學和1名女同學”,寫出事件的樣本點,并求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有四輛汽車,其中車的車牌尾號為0,兩輛車的車牌尾號為6,車的車牌尾號為5,已知在非限行日,每輛車都有可能出車或不出車.已知兩輛汽車每天出車的概率為,兩輛汽車每天出車的概率為,且四輛汽車是否出車是相互獨立的.
該公司所在地區(qū)汽車限行規(guī)定如下:
(1)求該公司在星期四至少有2輛汽車出車的概率;
(2)設(shè)表示該公司在星期一和星期二兩天出車的車輛數(shù)之和,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xex-x-ax2.
(1)當a=時,求f(x)的單調(diào)區(qū)間;
(2)當x≥0時,f(x)≥0,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com