“若函數(shù)f(x)在區(qū)間(-1,0)和(0,1)上都單調(diào)遞增,則函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞增”的一個(gè)反例是( 。
A.f(x)=x2B.f(x)=-x2
C.f(x)=
x+1
0
(x<0)
(x=0)
x-1(x>0)
D.f(x)=
x-1
0
(x<0)
(x=0)
x+1(x>0)
A選項(xiàng)中函數(shù)f(x)=x2圖象是開口向上,對稱軸為y軸,頂點(diǎn)在原點(diǎn)的拋物線,
當(dāng)x∈(-1,0)時(shí)為減函數(shù),當(dāng)x∈(0,1)時(shí)為增函數(shù),不符合條件.
B選項(xiàng)中函數(shù)f(x)=-x2圖象是開口向下,對稱軸為y軸,頂點(diǎn)在原點(diǎn)的拋物線,
當(dāng)x∈(-1,0)時(shí)為增函數(shù),當(dāng)x∈(0,1)時(shí)為減函數(shù),不符合條件.
C選項(xiàng)中函數(shù)是分段函數(shù),圖象如圖所示,
由圖可知,當(dāng)x∈(-1,0)時(shí)為增函數(shù),當(dāng)x∈(0,1)時(shí)為增函數(shù),
但當(dāng)x∈(-1,1)時(shí)既不是增函數(shù),也不是減函數(shù),符合條件.
D選項(xiàng)中函數(shù)也是分段函數(shù),圖象如圖(2)所示,
當(dāng)x∈(-1,0)時(shí)為增函數(shù),當(dāng)x∈(0,1)時(shí)為增函數(shù),且當(dāng)x∈(-1,1)時(shí)也為增函數(shù)所以D選項(xiàng)不符合條件.
故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題14分)設(shè)函數(shù), 當(dāng)P(x,y)是函數(shù)y=f(x)圖像上的點(diǎn)時(shí),點(diǎn)是函數(shù)y=g(x)圖象上的點(diǎn)。①寫出函數(shù)y=g(x)的解析式;②若當(dāng)時(shí),恒有試確定a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
cx+1,(1<x<c)
2-
x
c2
+1,(x≥c)
滿足f(c3)=
9
8

(1)求常數(shù)c的值;
(2)解關(guān)于x的不等式f(x)<4
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知關(guān)于x的函數(shù)y=loga(2-ax)在[0,1]上是單調(diào)遞減的函數(shù),則a的取值范圍為( 。
A.(0,1)B.(1,+∞)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知g(x)=1-x,f[g(x)]=2-x2
(1)求f(x)的解析式;
(2)h(x)=
f(x)-1
x2
-a,若h(x)在x∈[-3,-1]上的最大值是-
5
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=-x+log2
1-x
1+x
,定義域?yàn)椋?1,1)
(1)求f(
1
2008
)+f(-
1
2008
)
的值.
(2)判斷函數(shù)f(x)在定義域上的單調(diào)性并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=
1-x
+
x+3

(1)求函數(shù)f(x)的定義域和值域;
(2)若函數(shù)F(x)=f(x)+
1
f(x)
,求函數(shù)F(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)的圖象關(guān)于原點(diǎn)對稱,且在(0,+∞)上是增函數(shù),f(-3)=0,則不等式xf(x)<0的解集是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=
x2+bx+c,x≤0
bx+2,x>0
,若f(-4)=f(1),f(-1)=3,求b,c的值.

查看答案和解析>>

同步練習(xí)冊答案