【題目】設(shè)函數(shù)f(x)=aexlnx+ ,曲線y=f(x)在點(diǎn)(1,f(1))處得切線方程為y=e(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)證明:f(x)>1.
【答案】解:(Ⅰ)函數(shù)f(x)的定義域?yàn)椋?,+∞),f′(x)= + ,
由題意可得f(1)=2,f′(1)=e,
故a=1,b=2;
(Ⅱ)由(Ⅰ)知,f(x)=exlnx+ ,
∵f(x)>1,∴exlnx+ >1,∴l(xiāng)nx> ﹣ ,
∴f(x)>1等價(jià)于xlnx>xe﹣x﹣ ,設(shè)函數(shù)g(x)=xlnx,則g′(x)=1+lnx,
∴當(dāng)x∈(0, )時(shí),g′(x)<0;當(dāng)x∈( ,+∞)時(shí),g′(x)>0.
故g(x)在(0, )上單調(diào)遞減,在( ,+∞)上單調(diào)遞增,從而g(x)在(0,+∞)上的最小值為g( )=﹣ .
設(shè)函數(shù)h(x)=xe﹣x﹣ ,則h′(x)=e﹣x(1﹣x).
∴當(dāng)x∈(0,1)時(shí),h′(x)>0;當(dāng)x∈(1,+∞)時(shí),h′(x)<0,
故h(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
從而h(x)在(0,+∞)上的最大值為h(1)=﹣ .
綜上,當(dāng)x>0時(shí),g(x)>h(x),即f(x)>1
【解析】(Ⅰ)求出定義域,導(dǎo)數(shù)f′(x),根據(jù)題意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等價(jià)于xlnx>xe﹣x﹣ ,設(shè)函數(shù)g(x)=xlnx,函數(shù)h(x)= ,只需證明g(x)min>h(x)max , 利用導(dǎo)數(shù)可分別求得g(x)min , h(x)max;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知過點(diǎn)的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x2﹣1|+x2﹣kx.
(1)若k=2時(shí),求出函數(shù)f(x)的單調(diào)區(qū)間及最小值;
(2)若f(x)≥0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為 (),傳輸信息為,其中,運(yùn)算規(guī)則為:,,,,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是( )
A. 11010 B. 01100 C. 10111 D. 00011
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x-k)ex,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】O為△ABC內(nèi)一點(diǎn),且2 , =t ,若B,O,D三點(diǎn)共線,則t的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)某同學(xué)參加3門課程的考試。假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績(jī)的概率為,第二、第三門課程取得優(yōu)秀成績(jī)的概率分別為,(>),且不同課程是否取得優(yōu)秀成績(jī)相互獨(dú)立。記ξ為該生取得優(yōu)秀成績(jī)的課程數(shù),其分布列為
ξ | 0 | 1 | 2 | 3 |
(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績(jī)的概率;
(Ⅱ)求,的值;
(Ⅲ)求數(shù)學(xué)期望ξ。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=81,an= (k∈N*),則數(shù)列{an}的前n項(xiàng)和Sn的最大值為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com