已知雙曲線
和橢圓
有相同的焦點(diǎn),且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為________________.
試題分析:因?yàn),雙曲線
和橢圓
有相同的焦點(diǎn),所以,
;又雙曲線的離心率是橢圓離心率的兩倍,所以,
,
故a="2,b="
,雙曲線的方程為
.
點(diǎn)評:中檔題,涉及圓錐曲線問題,往往需要利用a,b,c,e的關(guān)系,要注意掌握離心率的不同表現(xiàn)形式。
。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
焦點(diǎn)在
軸上,漸近線方程為
的雙曲線的離心率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過雙曲線
左焦點(diǎn)
的直線與以右焦點(diǎn)
為圓心、
為半徑的圓相切于A點(diǎn),且
,則雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓具有性質(zhì):若
是橢圓
:
且
為常數(shù)
上關(guān)于原點(diǎn)對稱的兩點(diǎn),點(diǎn)
是橢圓上的任意一點(diǎn),若直線
和
的斜率都存在,并分別記為
,
,那么
與
之積是與點(diǎn)
位置無關(guān)的定值
.
試對雙曲線
且
為常數(shù)
寫出類似的性質(zhì),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線的一個焦點(diǎn)為
,點(diǎn)
位于該雙曲線上,線段
的中點(diǎn)坐標(biāo)為
,則該雙曲線的標(biāo)準(zhǔn)方程為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
的左右焦點(diǎn)分別為
,且
恰為拋物線
的焦點(diǎn),設(shè)雙曲線
與該拋物線的一個交點(diǎn)為
,若
是以
為底邊的等腰直角三角形,則雙曲線
的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
若雙曲線
的離心率等于
,直線
與雙曲線
的右支交于
兩點(diǎn).
(1)求
的取值范圍;
(2)若
,點(diǎn)
是雙曲線
上一點(diǎn),且
,求
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
(a>0,b>0)的離心率是
,則
的最小值為 ( )
A. | B.1 | C.2 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,
軸被拋物線
截得的線段長等于
的長半軸長.
(1)求
的方程;
(2)設(shè)
與
軸的交點(diǎn)為
,過坐標(biāo)原點(diǎn)
的直線
與
相交于
兩點(diǎn),直線
分別與
相交于
.
①證明:
為定值;
②記
的面積為
,試把
表示成
的函數(shù),并求
的最大值.
查看答案和解析>>