如圖3所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,
它們是由整數(shù)的倒數(shù)組成的,第行有個(gè)數(shù)且兩端的數(shù)均為,每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,如,,…,則第7行第4個(gè)數(shù)(從左往右數(shù))為(    )
A.B.C.D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前項(xiàng)和為30,前項(xiàng)和為100,則它的前項(xiàng)和是(    )
A.130B.170C.210D.260

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿(mǎn)分20分)本題有2小題,第1小題12分,第2小題8分.
已知數(shù)列{}和{}滿(mǎn)足:對(duì)于任何,有,為非零常數(shù)),且
(1)求數(shù)列{}和{}的通項(xiàng)公式;
(2)若的等差中項(xiàng),試求的值,并研究:對(duì)任意的,是否一定能是數(shù)列{}中某兩項(xiàng)(不同于)的等差中項(xiàng),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題滿(mǎn)分12分)
已知數(shù)列的前n項(xiàng)和為,,,等差數(shù)列中,,且,又、、成等比數(shù)列.
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的第二,三,六項(xiàng)順次成等比數(shù)列,且該等差數(shù)列不是常數(shù)數(shù)列,則這個(gè)等比數(shù)列的公比為(     )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)的和為,且
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求證:
(3)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的前n項(xiàng)和為,若=11,且=27,則當(dāng)取得最大值時(shí),n的值是(     )   
A.5B. 6C. 7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
數(shù)列的前n項(xiàng)和為,且).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿(mǎn)足:),求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)),是否存在實(shí)數(shù),使得當(dāng)時(shí),恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的前n項(xiàng)和是,若,則(  )
A.55B.95C.100D.190

查看答案和解析>>

同步練習(xí)冊(cè)答案