【題目】AB分別是雙曲線的左右頂點,設過的直線PA,PB與雙曲線分別交于點M,N,直線MNx軸于點Q,過Q的直線交雙曲線的于S,T兩點,且,則的面積( )

A.B.C.D.

【答案】A

【解析】

求得雙曲線的左右頂點,設出直線PA,PB的方程,聯(lián)立雙曲線的方程,求得M,N的坐標,設,運用M,NQ三點共線的條件,以及向量共線的條件,求得,設過Q的直線方程,聯(lián)立雙曲線方程,運用韋達定理和三角形的面積公式,計算可得所求值.

雙曲線的左右頂點為,

可得直線PA的方程為,PB的方程為,

聯(lián)立可得

解得,

代入可得,即有,

聯(lián)立可得

解得,

代入,可得,即

,由M,NQ三點共線,可得

即有,

MN的坐標代入化簡可得,

解得,即,

設過Q的直線方程為,

聯(lián)立雙曲線方程,可得,

,,可得,,恒成立,

,可得,代入韋達定理可得,

解得,

可得

故選A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中

(1)求的單調(diào)減區(qū)間;

(2)當時,恒成立,求的取值范圍;

(3)設 只有兩個零點),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,的中點.

(I)求證:平面平面;

(II)若異面直線所成角為,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解一款電冰箱的使用時間和市民對這款電冰箱的購買意愿,研究人員對該款電冰箱進行了相應的抽樣調(diào)查,得到數(shù)據(jù)的統(tǒng)計圖表如下:

購買意愿市民年齡

不愿意購買該款電冰箱

愿意購買該款電冰箱

總計

40歲以上

600

800

40歲以下

400

總計

800

(1)根據(jù)圖中的數(shù)據(jù),估計該款電冰箱使用時間的中位數(shù);

(2)完善表中數(shù)據(jù),并據(jù)此判斷是否有的把握認為“愿意購買該款電冰箱“與“市民年齡”有關;

(3)用頻率估計概率,若在該電冰箱的生產(chǎn)線上隨機抽取3臺,記其中使用時間不低于4年的電冰箱的臺數(shù)為,求的期望.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】住在同一城市的甲、乙兩位合伙人,約定在當天下午420-500間在某個咖啡館相見商談合作事宜,他們約好當其中一人先到后最多等對方10分鐘,若等不到則可以離去,則這兩人能相見的概率為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C上的點到右焦點F的最大距離為,離心率為

求橢圓C的方程;

如圖,過點的動直線l交橢圓CM,N兩點,直線l的斜率為,A為橢圓上的一點,直線OA的斜率為,且B是線段OA延長線上一點,且過原點O作以B為圓心,以為半徑的圓B的切線,切點為,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科技創(chuàng)新公司在第一年年初購買了一臺價值昂貴的設備,該設備的第1年的維護費支出為20萬元,從第2年到第6年,每年的維修費增加4萬元,從第7年開始,每年維修費為上一年的125%.

(1)求第n年該設備的維修費的表達式;

(2)設,若萬元,則該設備繼續(xù)使用,否則須在第n年對設備更新,求在第幾年必須對該設備進行更新?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是直線上任意兩點,外一點,若上一點滿足,則的值是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4名運動員參加一次乒乓球比賽,每名運動員都賽場并決出勝負.設第位運動員共勝場,負,則錯誤的結(jié)論是( )

A.

B.

C. 為定值,與各場比賽的結(jié)果無關

D. 為定值,與各場比賽結(jié)果無關

查看答案和解析>>

同步練習冊答案