7.在等差數(shù)列{an}中,已知a3+a8>0,且S9<0,則S1、S2、…S9中最小的是(  )
A.S4B.S5C.S6D.S7

分析 a3+a8>0,且S9<0,利用等差數(shù)列的性質(zhì)可得:a5+a6=a3+a8>0,S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=9a5<0,即可得出.

解答 解:等差數(shù)列{an}中,∵a3+a8>0,且S9<0,
∴a5+a6=a3+a8>0,S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=9a5<0,
∴a5<0,a6>0.
∴S1、S2、…S9中最小的是S5
故選:B.

點評 本題考查了等差數(shù)列的性質(zhì)、通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.設數(shù)列{an}的前n項和為Sn,且{${\frac{S_n}{n}}\right.$}是等差數(shù)列,已知a1=1,$\frac{S_2}{2}$+$\frac{S_3}{3}$+$\frac{S_4}{4}$=6.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列bn=$\frac{{{a_{n+1}}}}{{{a_{n+2}}}}$+$\frac{{{a_{n+2}}}}{{{a_{n+1}}}}$-2,數(shù)列{bn}的前n項和為Tn,求證:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設5個產(chǎn)品中有3個合格品,求任取3個產(chǎn)品中合格品數(shù)的方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如果樣本點有3個,坐標分別是(1,2),(2,2.5),(3,4.5),則用最小二乘法求出其線性回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$x中$\widehat{a}$與$\widehat$的關(guān)系是( 。
A.$\widehat{a}$+$\widehat$=3B.$\widehat{a}$+3$\widehat$=2C.2$\widehat{a}$+$\widehat$=3D.$\widehat{a}$+2$\widehat$=3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某幾何體的三視圖如圖,則該幾何體外接球的球面面積為(  )
A.B.C.D.10π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=atan3x+bsin3x+1(a,b為非零常數(shù)),且f(5)=7,則f(-5)=( 。
A.5B.-5C.7D.-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某校高一(1)班的課外生物研究小組通過互聯(lián)網(wǎng)上獲知,某種珍稀植物的種子在一定條件下發(fā)芽成功率為$\frac{1}{3}$,小組依據(jù)網(wǎng)上介紹的方法分小組進行驗證性實驗(每次實驗相互獨立).
(1)第一小組共做了5次種子發(fā)芽實驗(每次均種下一粒種子),求5次實驗至少有3次成功的概率;
(2)第二小組在老師的帶領下做了若干次實驗(每次均種下一粒種子),如果在一次實驗中,種子發(fā)芽成功則停止實驗;否則將繼續(xù)進行下去,直到種子發(fā)芽成功為止,而該小組能供實驗的種子只有n顆(n≥5,n∈N*).求第二小組所做的實驗次數(shù)ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.求下列函數(shù)的值域:
(1)y=3x2-x+2;                
(2)y=$\frac{3x+1}{x-2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.以下有關(guān)命題的說法錯誤的是( 。
A.“x=1”是“x2-3x+2=0”的充分不必要條件
B.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
C.對于命題p:?x>0,使得x2+x+1<0,則¬p:?x≤0,均有x2+x+1≥0
D.若p∨q為假命題,則p、q均為假命題

查看答案和解析>>

同步練習冊答案