已知向量數(shù)學(xué)公式=(Asin數(shù)學(xué)公式,Acos數(shù)學(xué)公式),數(shù)學(xué)公式=(cos數(shù)學(xué)公式,sin數(shù)學(xué)公式)函數(shù)f(x)=數(shù)學(xué)公式數(shù)學(xué)公式(A>0,x∈R),且f(2π)=2.
(1)求函數(shù)y=f(x)的表達(dá)式;
(2)設(shè)α,β∈[0,數(shù)學(xué)公式],f(3α+π)=數(shù)學(xué)公式,f(3β+數(shù)學(xué)公式)=-數(shù)學(xué)公式,求cos(α+β)的值.

解:(1)依題意得f(x)==A,
∵f(2π)=2,∴,∴,解得A=4.
∴f(x)=
(2)由,得,即,

又∵,∴sinα==
,得,即
,
又∵,∴,
∴cos(α+β)=cosαcosβ-sinαsinβ=
分析:(1)利用向量的數(shù)量積和兩角和的正弦公式即可得出;
(2)利用誘導(dǎo)公式、平方關(guān)系、兩角和的余弦公式即可得出.
點評:熟練掌握向量的數(shù)量積運(yùn)算和兩角和的正弦公式、誘導(dǎo)公式、平方關(guān)系、兩角和的余弦公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)已知向量
a
,
b
滿足
a
=(-2sinx,
3
cosx+
3
sinx),
b
=(cosx,cosx-sinx),函數(shù),f(x)=
a
b
(x∈R).
(I)將f(x)化成Asin((ωx+φ)(A>0,ω>0,|φ|<π的形式;
(Ⅱ)已知數(shù)列an=
n
2
 
f(
2
-
11π
24
)(n∈N*)
,求{an}的前2n項和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濰坊二模)已知向量
a
=(Asinωx,Acosωx),
b
=(cosθ,sinθ),f(x)=
a
b
+1,其中A>0、ω>0、θ為銳角.f(x)的圖象的兩個相鄰對稱中心的距離為
π
2
,且當(dāng)x=
π
12
時,f(x)取得最大值3.
(I)求f(x)的解析式;  
(II)將f(x)的圖象先向下平移1個單位,再向左平移?(?>0)個單位得g(x)的圖象,若g(x)為奇函數(shù),求?的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin
x
3
,
3
cos
x
3
),
b
=(1,1)
,函數(shù)f(x)=
a
b
cos
x
3

(1)將f(x)寫成Asin(ωx+φ)+B的形式,并求其圖象的對稱中心;
(2)如果△ABC的三邊a、b、c滿足b2=ac,且邊b所對的角為x,試求x的取值范圍及此時函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:濰坊二模 題型:解答題

已知向量
a
=(Asinωx,Acosωx),
b
=(cosθ,sinθ),f(x)=
a
b
+1,其中A>0、ω>0、θ為銳角.f(x)的圖象的兩個相鄰對稱中心的距離為
π
2
,且當(dāng)x=
π
12
時,f(x)取得最大值3.
(I)求f(x)的解析式;  
(II)將f(x)的圖象先向下平移1個單位,再向左平移?(?>0)個單位得g(x)的圖象,若g(x)為奇函數(shù),求?的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年湖北省荊州中學(xué)高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

已知向量,函數(shù)
(1)將f(x)寫成Asin(ωx+φ)+B的形式,并求其圖象的對稱中心;
(2)如果△ABC的三邊a、b、c滿足b2=ac,且邊b所對的角為x,試求x的取值范圍及此時函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案