【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有2f(x)+xf′(x)>x2 , 則不等式(x+2016)2f(x+2016)﹣4f(﹣2)>0的解集為(
A.(﹣∞,﹣2016)
B.(﹣∞,﹣2014)
C.(﹣∞,﹣2018)
D.(﹣2018,﹣2014)

【答案】C
【解析】解:由2f(x)+xf′(x)>x2 , (x<0),
得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0,
令F(x)=x2f(x),
則當(dāng)x<0時(shí),
得F′(x)<0,即F(x)在(﹣∞,0)上是減函數(shù),
∴F(x+2016)=(x+2016)2f(x+2016),F(xiàn)(﹣2)=4f(﹣2),
即不等式等價(jià)為F(x+2016)﹣F(﹣2)>0,
∵F(x)在(﹣∞,0)是減函數(shù),
∴由F(x+2016)>F(﹣2)得,x+2016<﹣2,
即x<﹣2018,
故選:C.
根據(jù)條件,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b>0且a≠1,b≠1,logab>1,某班的幾位學(xué)生根據(jù)以上條件,得出了以下4個(gè)結(jié)論:
①b>1 且 b>a; ②a<1 且 a<b;③b<1 且 b<a;④a<1 且b<1.
其中不可能成立的結(jié)論共有( )個(gè).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax3(a>0,a≠1)的圖象必經(jīng)過點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+1,x∈[﹣5,5].
(1)若y=f(x)在[﹣5,5]上是單調(diào)函數(shù),求實(shí)數(shù)a取值范圍.
(2)求y=f(x)在區(qū)間[﹣5,5]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①m⊥α,n∥α,則m⊥n;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,β∥γ,m⊥α,則m⊥γ;
④若α∩γ=m,β∩γ=n,m∥n,則α∥β.
其中正確命題的序號(hào)是(
A.①和③
B.②和③
C.③和④
D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=﹣x2+2(a﹣1)x+2在(﹣∞,4)上是增函數(shù),則a的范圍是(
A.a≥5
B.a≥3
C.a≤3
D.a≤﹣5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式:72=49,73=343,74=2401,…,則72016的末兩位數(shù)字為(
A.01
B.43
C.07
D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)游戲,將標(biāo)有數(shù)字1、2、3、4的四張卡片分別隨機(jī)發(fā)給甲、乙、丙、丁4個(gè)人,每人一張,并請(qǐng)這4人在看自己的卡片之前進(jìn)行預(yù)測(cè):甲說:乙或丙拿到標(biāo)有3的卡片;乙說:甲或丙拿到標(biāo)有2的卡片;丙說:標(biāo)有1的卡片在甲手中;丁說:甲拿到標(biāo)有3的卡片.結(jié)果顯示:這4人的預(yù)測(cè)都不正確,那么甲、乙、丙、丁4個(gè)人拿到的卡片上的數(shù)字依次為、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一段演繹推理是這樣的:“因?yàn)橐淮魏瘮?shù)y=kx+b(k≠0)在R上是增函數(shù),而y=﹣x+2是一次函數(shù),所以y=﹣x+2在R上是增函數(shù)”的結(jié)論顯然是錯(cuò)誤,這是因?yàn)椋?/span>
A.大前提錯(cuò)誤
B.小前提錯(cuò)誤
C.推理形式錯(cuò)誤
D.非以上錯(cuò)誤

查看答案和解析>>

同步練習(xí)冊(cè)答案