已知拋物線C的頂點在原點,焦點為F(2, 0)。
(1)求拋物線C的方程;
(2)過的直線交曲線兩點,又的中垂線交軸于點
的取值范圍。
(1)  (2)
本試題主要考查而來拋物線的方程,以及直線啊你與拋物線的位置關系的運用。
解:(1)設拋物線方程為,則
所以,拋物線的方程是.      …………………4分
(2)直線的方程是,聯(lián)立消去,…6分
顯然,由,得.   ……………8分
由韋達定理得,,
所以,則中點坐標是,……10分
由 可得 ,                    
所以,,令,則,其中,…………12分
因為,所以函數(shù)是在上增函數(shù).
所以,的取值范圍是
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,橢圓的左、右焦點分別為.已知都在橢圓上,其中為橢圓的離心率.
(1)求橢圓的方程;
(2)設是橢圓上位于軸上方的兩點,且直線與直線平行,交于點P.
(i)若,求直線的斜率;
(ii)求證:是定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量動點到定直線的距離等于并且滿足其中是坐標原點,是參數(shù).
(1)求動點的軌跡方程,并判斷曲線類型;
(2)當時,求的最大值和最小值;
(3)如果動點的軌跡是圓錐曲線,其離心率滿足求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知某曲線C的參數(shù)方程為,(t為參數(shù),a∈R)點M(5,4)在該曲線上,(1)求常數(shù)a;(2)求曲線C的普通方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若雙曲線的左、右頂點分別為、,點是第一象限內雙曲線上的點.若直線、的傾斜角分別為,且,那么的值是       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,為極點,求使是正三角形的點的極坐標為_______          __

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設雙曲線的兩個焦點分別為、,離心率為2.
(1)求雙曲線的漸近線方程;
(2)過點能否作出直線,使與雙曲線交于、兩點,且,若存在,求出直線方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是雙曲線的兩個焦點,點在雙曲線上,且滿足:,則的值為(   )
A.2B.1 C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知點在拋物線上,點到拋物線的焦點F的距離為2.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線與拋物線C交于O (坐標原點),A兩點,直線與拋物線C交于B,D兩點.
(ⅰ) 若 |,求實數(shù)的值;
(ⅱ) 過A,BD分別作y軸的垂線,垂足分別為A1B1,D1.記分別為三角形OAA1和四邊形BB1D1D的面積,求的取值范圍.

查看答案和解析>>

同步練習冊答案