已知拋物線C的頂點在原點,焦點為F(2, 0)。
(1)求拋物線C的方程;
(2)過
的直線
交曲線
于
兩點,又
的中垂線交
軸于點
,
求
的取值范圍。
(1)
(2)
本試題主要考查而來拋物線的方程,以及直線啊你與拋物線的位置關系的運用。
解:(1)設拋物線方程為
,則
,
所以,拋物線的方程是
. …………………4分
(2)直線
的方程是
,聯(lián)立
消去
得
,…6分
顯然
,由
,得
. ……………8分
由韋達定理得,
,
所以
,則
中點
坐標是
,……10分
由
可得
,
所以,
,令
,則
,其中
,…………12分
因為
,所以函數(shù)
是在
上增函數(shù).
所以,
的取值范圍是
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在平面直角坐標系
中,橢圓
的左、右焦點分別為
,
.已知
和
都在橢圓上,其中
為橢圓的離心率.
(1)求橢圓的方程;
(2)設
是橢圓上位于
軸上方的兩點,且直線
與直線
平行,
與
交于點P.
(i)若
,求直線
的斜率;
(ii)求證:
是定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知向量
動點
到定直線
的距離等于
并且滿足
其中
是坐標原點,
是參數(shù).
(1)求動點
的軌跡方程,并判斷曲線類型;
(2)當
時,求
的最大值和最小值;
(3)如果動點
的軌跡是圓錐曲線,其離心率
滿足
求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知某曲線C的參數(shù)方程為
,(t為參數(shù),a∈R)點M(5,4)在該曲線上,(1)求常數(shù)a;(2)求曲線C的普通方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若雙曲線
的左、右頂點分別為
、
,點
是第一象限內雙曲線上的點.若直線
、
的傾斜角分別為
,
,且
,那么
的值是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,
為極點,求使
是正三角形的
點的極坐標為_______
__
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設雙曲線
的兩個焦點分別為
、
,離心率為2.
(1)求雙曲線的漸近線方程;
(2)過點
能否作出直線
,使
與雙曲線
交于
、
兩點,且
,若存在,求出直線方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
是雙曲線
的兩個焦點,點
在雙曲線上,且滿足:
,
,則
的值為( )
A.2 | B.1 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分15分)已知點
在拋物線
上,
點到拋物線
的焦點F的距離為2.
(Ⅰ)求拋物線
的方程;
(Ⅱ)已知直線
與拋物線C交于
O (坐標原點),
A兩點,直線
與拋物線C交于
B,
D兩點.
(ⅰ) 若 |
,求實數(shù)
的值;
(ⅱ) 過
A,
B,
D分別作
y軸的垂線,垂足分別為
A1,
B1,
D1.記
分別為三角形
OAA1和四邊形
BB1D1D的面積,求
的取值范圍.
查看答案和解析>>