若圓C:x2+y2=1在矩陣A=
a   0
0   b
(a>0,b>0)對(duì)應(yīng)的變換下變成橢圓E:
x2
4
+
y2
3
=1.
(Ⅰ)求a,b的值;
(Ⅱ)判斷矩陣A是否可逆,如果可逆,求矩陣A的逆矩陣A-1,如不可逆,說明理由.
考點(diǎn):逆變換與逆矩陣,幾種特殊的矩陣變換
專題:選作題,矩陣和變換
分析:(Ⅰ)設(shè)P(x,y)為圓C上的任意一點(diǎn),在矩陣A對(duì)應(yīng)的變換下變?yōu)榱硪粋(gè)點(diǎn)P'(x',y'),代入橢圓方程,對(duì)照?qǐng)A的方程即可求出a和b的值;
(Ⅱ)因?yàn)?span id="ch7uoxr" class="MathJye">|A|=
.
20
0
3
.
=2
3
≠0,所以矩陣A可逆,再代入逆矩陣的公式,求出結(jié)果.
解答: 解:(Ⅰ)設(shè)點(diǎn)P(x,y)為圓C:x2+y2=1上任意一點(diǎn),經(jīng)過矩陣A變換后對(duì)應(yīng)點(diǎn)為P'(x',y'),
a0
0b
x
y
=
ax
by
=
x′
y′
,所以
x′=ax
y′=by 

因?yàn)辄c(diǎn)P'(x',y')在橢圓E:
x2
4
+
y2
3
=1
上,所以
a2x2
4
+
b2y2
3
=1
,…(2分)
又圓方程為x2+y2=1,故
a2
4
=1
b2
3
=1
,即
a2=4
b2=3
,
又a>0,b>0,所以a=2,b=
3
.…(4分)
(Ⅱ)A=
20
0
3
,因?yàn)?span id="xdqepl6" class="MathJye">|A|=
.
20
0
3
.
=2
3
≠0,所以矩陣A可逆,…(5分)
所以A-1=
1
2
0
0
3
3
…(7分)
點(diǎn)評(píng):本題主要考查了特殊矩陣的變換、逆變換與逆矩陣,同時(shí)考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且
1
an
+
1
an+1
=
3
2n
(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an2+log2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M必在點(diǎn)N的右側(cè)),且|MN|=3,己知橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)的焦距等于2|ON|,離心率e=
1
2
;
(1)求圓C和橢圓D的方程;
(2)若過點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-5x+a.
(1)當(dāng)a=-4時(shí),求不等式f(x)≥2的解集;
(2)對(duì)任意x∈R,若f(x)≥-2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2-3sinα
y=3cosα-2
,(其中α為參數(shù),α∈R),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)0為極點(diǎn),以x軸非負(fù)半軸為極軸)中,曲線C2的極坐標(biāo)方程為ρcos(θ-
π
4
)=a.
(Ⅰ)把曲線C1和C2的方程化為直角坐標(biāo)方程;
(Ⅱ)若曲線C1上恰有三個(gè)點(diǎn)到曲線C2的距離為
3
2
,求曲線C2的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是各項(xiàng)不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足an2=S2n-1,n∈N*,數(shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求a1,d和an;
(2)求
lim
n→∞
Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比.
(1)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{
1
anan+2
}的前n項(xiàng)和,若Tn≤λ對(duì)?n∈N*恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x3-ax+1.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)在區(qū)間[-1,2]內(nèi)至少存在一個(gè)實(shí)數(shù)x,使得f(x)≤0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y2=4x上一點(diǎn),Q為圓C:(x+2)2+(y-2)2=1上一點(diǎn),點(diǎn)P到直線l:x=-1的距離為d,則|PQ|+d的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案