分析 (1)設(shè)恰好有一種新產(chǎn)品研發(fā)成功為事件A,利用相互獨(dú)立與互斥事件的概率計(jì)算公式可得P(A)=(1-$\frac{3}{4}$)×$\frac{3}{5}$+$\frac{3}{4}$×(1-$\frac{3}{5}$).
(2)由題可得設(shè)企業(yè)可獲得利潤(rùn)為ξ,則X的取值有-90,50,80,220.由獨(dú)立試驗(yàn)的概率計(jì)算公式可得,P(X=0)=(1-$\frac{3}{4}$)(1-$\frac{3}{5}$),P(X=50)=$(1-\frac{3}{4})$×$\frac{3}{5}$,P(X=80)=$\frac{3}{4}×(1-\frac{3}{5})$,
P(X=220)=$\frac{3}{4}×\frac{3}{5}$.
解答 解:(1)設(shè)恰好有一種新產(chǎn)品研發(fā)成功為事件A,則
P(A)=(1-$\frac{3}{4}$)×$\frac{3}{5}$+$\frac{3}{4}$×(1-$\frac{3}{5}$)=$\frac{9}{20}$.
(2)由題可得設(shè)企業(yè)可獲得利潤(rùn)為ξ,則X的取值有-90,50,80,220.
由獨(dú)立試驗(yàn)的概率計(jì)算公式可得,P(X=0)=(1-$\frac{3}{4}$)(1-$\frac{3}{5}$)=$\frac{1}{10}$,
P(X=50)=$(1-\frac{3}{4})$×$\frac{3}{5}$=$\frac{3}{20}$,
P(X=80)=$\frac{3}{4}×(1-\frac{3}{5})$=$\frac{3}{10}$,
P(X=220)=$\frac{3}{4}×\frac{3}{5}$=$\frac{9}{20}$.
∴ξ的分布列如下:
X | -90 | 50 | 80 | 220 |
P | $\frac{1}{10}$ | $\frac{3}{20}$ | $\frac{3}{10}$ | $\frac{9}{20}$ |
點(diǎn)評(píng) 本題考查了相互獨(dú)立與互斥事件的概率計(jì)算公式、隨機(jī)變量的分布列與數(shù)學(xué)期望計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1+$\frac{2π}{3}$ | B. | $\frac{4}{3}$+$\frac{2π}{3}$ | C. | $\frac{2\sqrt{3}}{3}$+$\frac{\sqrt{3}π}{6}$ | D. | $\frac{2\sqrt{3}}{3}$+$\frac{\sqrt{3}π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>3 | B. | a≥3 | C. | a≥-1 | D. | a>-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題
已知向量,,函數(shù).
(1)若,,求的值;
(2)在△中,角,,的對(duì)邊分別是,,,且滿足,求角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com