【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少?
【答案】答:因?yàn)榫鶆虻牧W勇湓谡叫蝺?nèi)任何一點(diǎn)是等可能的
所以符合幾何概型的條件。
設(shè)A=“粒子落在中間帶形區(qū)域”則依題意得
正方形面積為:25×25=625
兩個(gè)等腰直角三角形的面積為:2××23×23=529
帶形區(qū)域的面積為:625-529=96
∴ P(A)=
【解析】
求出帶形區(qū)域的面積,并求出正方形面積用來表示全部基本事件,再由幾何概型公式,即可求解.
因?yàn)榫鶆虻牧W勇湓谡叫蝺?nèi)任何一點(diǎn)是等可能的
所以符合幾何概型的條件.
設(shè)A=“粒子落在中間帶形區(qū)域”則依題意得
正方形面積為:25×25=625
兩個(gè)等腰直角三角形的面積為:2××23×23=529
帶形區(qū)域的面積為:625﹣529=96
∴P(A)=,
則粒子落在中間帶形區(qū)域的概率是.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人耳的聽力情況可以用電子測聽器檢測,正常人聽力的等級為0-25(分貝),并規(guī)定測試值在區(qū)間為非常優(yōu)秀,測試值在區(qū)間為優(yōu)秀.某班50名同學(xué)都進(jìn)行了聽力測試,所得測試值制成頻率分布直方圖:
(Ⅰ)現(xiàn)從聽力等級為的同學(xué)中任意抽取出4人,記聽力非常優(yōu)秀的同學(xué)人數(shù)為,求的分布列與數(shù)學(xué)期望;
(Ⅱ)在(Ⅰ)中抽出的4人中任選一人參加一個(gè)更高級別的聽力測試,測試規(guī)則如下:四個(gè)音叉的發(fā)生情況不同,由強(qiáng)到弱的次序分別為1,2,3,4.測試前將音叉隨機(jī)排列,被測試的同學(xué)依次聽完后給四個(gè)音叉按發(fā)音的強(qiáng)弱標(biāo)出一組序號(hào), , , (其中, , , 為1,2,3,4的一個(gè)排列).若為兩次排序偏離程度的一種描述, ,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為左,右焦點(diǎn),分別為左,右頂點(diǎn),D為上頂點(diǎn),原點(diǎn)到直線的距離為.設(shè)點(diǎn)在第一象限,縱坐標(biāo)為t,且軸,連接交橢圓于點(diǎn).
(1)求橢圓的方程;
(2)(文)若三角形的面積等于四邊形的面積,求直線的方程;
(理)求過點(diǎn)的圓方程(結(jié)果用t表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-2,0),(2,0),并且經(jīng)過點(diǎn),求它的標(biāo)準(zhǔn)方程;
(2)已知雙曲線兩個(gè)焦點(diǎn)的坐標(biāo)分別是(0,-6),(0,6),并且經(jīng)過點(diǎn)(2,-5),求它的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是各項(xiàng)均為正數(shù)且公比不等于1的等比數(shù)列,對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號(hào)為( )
A.①②B.①②④C.③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(),滿足,且在時(shí)恒成立.
(1)求、的值;
(2)若,解不等式;
(3)是否存在實(shí)數(shù),使函數(shù)在區(qū)間上有最小值?若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱中,已知側(cè)面.
(1)求證: 平面;
(2)是棱長上的一點(diǎn),若二面角的正弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:ρ=1,曲線C2:(t為參數(shù))
(1)求C1與C2交點(diǎn)的坐標(biāo);
(2)若把C1,C2上各點(diǎn)的縱坐標(biāo)都壓縮為原來的一半,分別得到曲線C1′與C2′,寫出C1′與C2′的參數(shù)方程,C1與C2公共點(diǎn)的個(gè)數(shù)和C1′與C2′公共點(diǎn)的個(gè)數(shù)是否相同,說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中為真命題的是( ) .
A.“若,則”的否命題B.“若,則”的逆命題.
C.“若,則”的否命題D.“若,則”的逆否命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com