【題目】設(shè)集合A={x|x≥﹣1},B={x|y=ln(x﹣2},則A∩RB=(
A.[﹣1,2)
B.[2,+∞)
C.[﹣1,2]
D.[﹣1,+∞)

【答案】C
【解析】解:集合A={x|x≥﹣1}, B={x|y=ln(x﹣2}={x|x﹣2>0}={x|x>2},
RB={x|x≤2},
∴A∩RB={x|﹣1≤x≤2}=[﹣1,2].
故選:C.
【考點(diǎn)精析】本題主要考查了交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí)點(diǎn),需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣2x≤0},B={﹣1,0,1,2},則A∩B=(
A.[0,2]
B.{0,1,2}
C.(﹣1,2)
D.{﹣1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下面命題;
①平行向量的方向一定相同;
②共線向量一定是相等向量;
③相等向量一定是共線向量,不相等向量一定不共線;
④起點(diǎn)不同,但方向相同且模相等的幾個(gè)向量是相等向量;
⑤相等向量、若起點(diǎn)不同,則終點(diǎn)一定不同;
⑥不相等的向量一定不平行;
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】?jī)蓚(gè)數(shù)272與595的最大公約數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:函數(shù)y=lg(1﹣x)在(﹣∞,1)上單調(diào)遞減,命題q:函數(shù)y=2cosx是偶函數(shù),則下列命題中為真命題的是(
A.p∧q
B.(¬p)∨(¬q)
C.(¬p)∧q
D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線a平行于平面α,則下列結(jié)論正確的是(
A.直線a一定與平面α內(nèi)所有直線平行
B.直線a一定與平面α內(nèi)所有直線異面
C.直線a一定與平面α內(nèi)唯一一條直線平行
D.直線a一定與平面α內(nèi)一組平行直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動(dòng)圓M與圓O:x2+y2=1外切,與圓C:(x﹣3)2+y2=1內(nèi)切,那么動(dòng)圓的圓心M的軌跡是(
A.雙曲線
B.雙曲線的一支
C.橢圓
D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面α外有兩條直線m和n,如果m和n在平面α內(nèi)的射影分別是m1和n1 , 給出下列四個(gè)命題: ①m1⊥n1m⊥n;
②m⊥nm1⊥n1
③m1與n1相交m與n相交或重合
④m1與n1平行m與n平行或重合
其中不正確的命題個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合U=R,A={x|4≤2x<16},B={x|y=lg(x﹣3)}.求:
(1)A∩B
(2)(UA)∪B.

查看答案和解析>>

同步練習(xí)冊(cè)答案