【題目】如圖,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分別是AD,BE的中點,將三角形ADE沿AE折起,則下列說法正確的是________(填序號).
①不論D折至何位置(不在平面ABC內),都有MN∥平面DEC;②不論D折至何位置,都有MN⊥AE;③不論D折至何位置(不在平面ABC內),都有MN∥AB;④在折起過程中,一定存在某個位置,使EC⊥AD.
科目:高中數學 來源: 題型:
【題目】對于兩條平行直線和圓的位置關系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關系為“平行相切”;若兩直線都與圓相離,則稱該位置關系為“平行相離”;否則稱為“平行相交”.已知直線l1:ax+3y+6=0,l2:2x+(a+1)y+6=0與圓C:x2+y2+2x=b2-1(b>0)的位置關系是“平行相交”,則實數b的取值范圍為 ( )
A. (, ) B. (0, )
C. (0, ) D. (, )∪(,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1所示的平面圖形中,ABCD是邊長為2的正方形,△HDA和△GDC都是以D為直角頂點的等腰直角三角形,點E是線段GC的中點.現將△HDA和△GDC分別沿著DA,DC翻折,直到點H和G重合為點P.連接PB,得如圖2的四棱錐.
(Ⅰ)求證:PA∥平面EBD;
(Ⅱ)求二面角C﹣PB﹣D大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】知f(x)是定義在R上的奇函數,且當x∈(0,+∞)時,f(x)=2018x+log2018x,則函數f(x)的零點個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l1:(k-3)x+(4-k)y+1=0與l2:2(k-3)x-2y+3=0.
(1)若這兩條直線垂直,求k的值;
(2)若這兩條直線平行,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在Rt△AOB中,AO=1,BO=2,如圖,動點P是在以O點為圓心,OB為半徑的扇形內運動(含邊界)且∠BOC=90°;設 ,則x+y的取值范圍 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com