【題目】對(duì)于任意的,若數(shù)列同時(shí)滿足下列兩個(gè)條件,則稱數(shù)列具有“性質(zhì)m”:;存在實(shí)數(shù)M,使得成立.
數(shù)列、中,、(),判斷、是否具有“性質(zhì)m”;
若各項(xiàng)為正數(shù)的等比數(shù)列的前n項(xiàng)和為,且,,求證:數(shù)列具有“性質(zhì)m”;
數(shù)列的通項(xiàng)公式對(duì)于任意,數(shù)列具有“性質(zhì)m”,且對(duì)滿足條件的M的最小值,求整數(shù)t的值.
【答案】(1)數(shù)列不具有“m性質(zhì)”; 數(shù)列具有“性質(zhì)m”(2)證明見解析;(3)
【解析】
利用數(shù)列具有“性質(zhì)m”的條件對(duì)、()判斷即可;數(shù)列是各項(xiàng)為正數(shù)的等比數(shù)列,利用已知求得q,從而可求得,及,分析驗(yàn)證即可;由于,可求得,,由可求得,可判斷時(shí),數(shù)列是單調(diào)遞增數(shù)列,且,從而可求得,于是有,經(jīng)檢驗(yàn)不合題意,于是得到答案.
在數(shù)列中,取,則,不滿足條件,
所以數(shù)列不具有“m性質(zhì)”;
在數(shù)列中,,,,
,,
則,
,
,所以滿足條件;
()滿足條件,所以數(shù)列具有“性質(zhì)m”
因?yàn)閿?shù)列是各項(xiàng)為正數(shù)的等比數(shù)列,則公比,
將代入得,,
解得或舍去
所以,,
對(duì)于任意的,,且
所以數(shù)列數(shù)列具有“m性質(zhì)”
且
由于,則,,
由于任意且,數(shù)列具有“性質(zhì)m”,所以
即,化簡得,
即對(duì)于任意且恒成立,所以
由于及,所以
即時(shí),數(shù)列是單調(diào)遞增數(shù)列,且
只需,解得
由得,所以滿足條件的整數(shù)t的值為2和3.
經(jīng)檢驗(yàn)不合題意,舍去,滿足條件的整數(shù)只有
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-x3+2x2+2x,若存在滿足0≤x0≤3的實(shí)數(shù)x0,使得曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線與直線x+my-10=0垂直,則實(shí)數(shù)m的取值范圍是( )
A. [6,+∞)B. (-∞,2]
C. [2,6]D. [5,6]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù),.
(1)求證:;
(2)若對(duì)于任意,恒成立,求的取值范圍;
(3)若存在,使,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、是雙曲線:(,)的兩個(gè)頂點(diǎn),點(diǎn)是雙曲線上異于、的一點(diǎn),為坐標(biāo)原點(diǎn),射線交橢圓:于點(diǎn),設(shè)直線、、、的斜率分別為、、、.
(1)若雙曲線的漸近線方程是,且過點(diǎn),求的方程;
(2)在(1)的條件下,如果,求△的面積;
(3)試問:是否為定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐O﹣ABCD中,底面ABCD四邊長為1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn).
(1)證明:直線MN∥平面OCD;
(2)求異面直線AB與MD所成角的大;
(3)求點(diǎn)B到平面OCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、是雙曲線的兩個(gè)頂點(diǎn),點(diǎn)是雙曲線上異于、的一點(diǎn),為坐標(biāo)原點(diǎn),射線交橢圓于點(diǎn),設(shè)直線、、、的斜率分別為、、、.
(1)若雙曲線的漸近線方程是,且過點(diǎn),求的方程;
(2)在(1)的條件下,如果,求的面積;
(3)試問:是否為定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是的兩個(gè)非空子集,如果存在一個(gè)函數(shù)滿足:① ;② 對(duì)任意,當(dāng)時(shí),恒有,那么稱這兩個(gè)集合為“到的保序同構(gòu)”,以下集合對(duì)不是“到的保序同構(gòu)”的是( )
A.B.,
C.,D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)滿足不等式;
命題q:關(guān)于不等式對(duì)任意的恒成立.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理中是演繹推理的為( )
A. 由金、銀、銅、鐵可導(dǎo)電,猜想:金屬都可導(dǎo)電
B. 猜想數(shù)列的通項(xiàng)公式為
C. 半徑為的圓的面積,則單位圓的面積
D. 由平面直角坐標(biāo)系中圓的方程為,推測空間直角坐標(biāo)系中球的方程為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com