設(shè)橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,A是橢圓C上第一象限內(nèi)一點(diǎn),坐標(biāo)原點(diǎn)O到直線AF1的距離為
(I)求橢圓C的方程;
(II)設(shè)Q是橢圓C上的一點(diǎn),過(guò)點(diǎn)Q的直線lx軸于點(diǎn),求直線l的斜率。
(Ⅰ)由題設(shè)知,(其中是橢圓的半焦距,.由于,所以,所以點(diǎn)的坐標(biāo)為,故所在直線方程為,所以坐標(biāo)原點(diǎn)到直線的距離為.又,所以,解得:,故所求橢圓方程為.   ……6分
另解:作,垂足為,∵,易知,;又 ,,. 故所求橢圓的方程為
(Ⅱ)易知,直線的斜率存在,設(shè)為,則其方程為,則有. 設(shè),由于三點(diǎn)共線,且,所以,解得
在橢圓上,故 ,解得,所以所求直線的斜率為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn).若曲線上存在兩點(diǎn),使為正三角形,則稱(chēng)型曲線.給定下列三條曲線:①; ②;③.其中,型曲線的個(gè)數(shù)是( ▲ )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知集合,直線與雙曲線有且只有一個(gè)公共點(diǎn),其中,則滿(mǎn)足上述條件的雙曲線共有( ▲  )
A.1個(gè)B.2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù),圓的外接圓,斜率為1的直線與圓相交于不同兩點(diǎn),的中點(diǎn)為為坐標(biāo)原點(diǎn),且.
(1)求圓的方程;
(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)已知平面上一定點(diǎn)C(4,0)和一定直線為該平面上一動(dòng)點(diǎn),作,垂足為Q,且(
(Ⅰ)問(wèn)點(diǎn)P在什么曲線上?并求出該曲線的方程;
(Ⅱ)設(shè)直線與(1)中的曲線交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過(guò)點(diǎn)D(0,-2)?若存在,求出k的值,若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某圓錐曲線有兩個(gè)焦點(diǎn)F1、F2,其上存在一點(diǎn)滿(mǎn)足=4:3:2,則此圓錐曲線的離心率等于
A.B.或2 C.或2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分16分)已知橢圓的離心率為.
⑴若圓(x-2)2+(y-1)2=與橢圓相交于A、B兩點(diǎn)且線段AB恰為圓的直徑,求橢圓W方程;
⑵設(shè)L為過(guò)橢圓右焦點(diǎn)F的直線,交橢圓于M、N兩點(diǎn),且L的傾斜角為600.求的值.
⑶在(1)的條件下,橢圓W的左右焦點(diǎn)分別為F1、 F2,點(diǎn)R在直線l:x-y+8=0上.當(dāng)∠F1RF2取最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

是橢圓上位于軸上方的一點(diǎn),F(xiàn)是橢圓的左焦點(diǎn),為原點(diǎn),的中點(diǎn),且,則直線的斜率為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.設(shè)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大.
(Ⅰ)求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線交曲線兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案