【題目】以下四個關(guān)于圓錐曲線的命題中:
①雙曲線與橢圓有相同的焦點(diǎn);
②在平面內(nèi),設(shè)為兩個定點(diǎn),為動點(diǎn),且,其中常數(shù)為正實(shí)數(shù),則動點(diǎn)的軌跡為橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④過雙曲線的右焦點(diǎn)作直線交雙曲線于兩點(diǎn),若,則這樣的直線有且僅有3條.其中真命題的序號為__________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱ABCD﹣A1B1C1D1的底面是邊長為2的菱形,且∠BAD= ,AA1⊥平面ABCD,AA1=1,設(shè)E為CD中點(diǎn)
(1)求證:D1E⊥平面BEC1
(2)點(diǎn)F在線段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①第二象限角比第一象限角大;②設(shè)是第二象限角,則;③三角形的內(nèi)角是第一象限角或第二象限角;④函數(shù)是最小正周期為的周期函數(shù);⑤在△ABC中,若,則A>B.其中正確的是___________ (寫出所有正確說法的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用另一種形式表示下列集合:
(1){絕對值不大于3的整數(shù)};
(2){所有被3整除的數(shù)};
(3){x|x=|x|,x∈Z且x<5};
(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)當(dāng)時,解不等式;
(Ⅱ)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;
(Ⅲ)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一裝有水的直三棱柱容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側(cè)棱為10,側(cè)面水平放置,如圖所示,點(diǎn), , , 分別在棱, , , 上,水面恰好過點(diǎn), , , ,且.
(1)證明: ;
(2)若底面水平放置時,求水面的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),對稱軸為坐標(biāo)軸,一條漸近線方程為,右焦點(diǎn),雙曲線的實(shí)軸為,為雙曲線上一點(diǎn)(不同于,),直線,分別與直線交于,兩點(diǎn).
()求雙曲線的方程.
()證明為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】)設(shè)f(x)、g(x)、h(x)是定義域為R的三個函數(shù),對于命題:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函數(shù),則f(x)、g(x)、h(x)均是增函數(shù);②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x)均是以T為周期的函數(shù),下列判斷正確的是( 。
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=sinx﹣ cosx的圖象可由函數(shù)y=sinx+ cosx的圖象至少向右平移個單位長度得到.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com