【題目】已知a,b為正實數(shù),函數(shù)f(x)=ax3+bx+2x在[0,1]上的最大值為4,則f(x)在[﹣1,0]上的最小值為

【答案】﹣
【解析】解:∵a,b為正實數(shù),函數(shù)f(x)=ax3+bx+2x ,
∴f(x)在R上是增函數(shù),
∴f(x)在[0,1]上的最大值f(1)=a+b+2=4,
∴a+b=2.
∴f(x)在[﹣1,0]上的最小值f(﹣1)=﹣(a+b)+21=﹣2+ =﹣
∴f(x)在[﹣1,0]上的最小值是﹣
所以答案是:﹣
【考點精析】本題主要考查了函數(shù)的最大(小)值與導數(shù)的相關知識點,需要掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A,B,C的對邊分別是a,b,c,且bcosB是acosC,ccosA的等差中項.
(1)求∠B的大;
(2)若a+c= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和Snn2n .

(1)求數(shù)列的通項公式an;

(2)令 ,求數(shù)列{bn}的前n項和為Tn .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個袋中裝有四個形狀大小完全相同的編號為1,2,3,4的球,從袋中隨機抽取一個球,將其編號記為m,然后從袋中余下的三個球中再隨機抽取一個球,將其編號記為n,則關于x的一元二次方程無實根的概率為__________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:x>1, x>0,命題q:x∈R,x3>3x , 則下列命題為真命題的是(
A.p∧q
B.p∨(¬q)
C.p∧(¬q)
D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學在開學季準備銷售一種盒飯進行試創(chuàng)業(yè),在一個開學季內,每售出1盒該盒飯獲利潤10元,未售出的產品,每盒虧損5元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了150盒該產品,以x(單位:盒,)表示這個開學季內的市場需求量,y(單位:元)表示這個開學季內經銷該產品的利潤.

(1)根據直方圖估計這個開學季內市場需求量x的平均數(shù)和眾數(shù);

(2)將y表示為x的函數(shù);

(3)根據頻率分布直方圖估計利潤y不少于1050元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據如表所示:

x

1

2

3

4

5

6

7

y

6

11

21

34

66

101

196

根據以上數(shù)據,繪制了散點圖.

(1)根據散點圖判斷,在推廣期內,,均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

(2)y關于x的回歸方程不是線性的可通過換元方法把它化歸為線性回歸方程。例如:ab為常數(shù),e為自然對數(shù)的底數(shù)),可以兩邊同時取自然對數(shù),再令,先用最小二乘法求出x的線性回歸方程,再得出yx的回歸方程。根據(1)的判斷結果及表1中的數(shù)據,求y關于x的回歸方程;

(3)由(2)中的歸方程預測活動推出第12天使用掃碼支付的人次。

參考數(shù)據:

66

1.54

2711

50.12

3.47

其中,參考公式:對于一組數(shù)據,…,,其回歸直線的斜率和截距的最小二乘估計公式分別為 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線與的交點的軌跡為曲線,若,且是曲線上不同的點,滿足,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱ABC A 1B1C1的側棱長和底面邊長均為2,DBC 的中點.

(1) 求證:AD⊥平面B1BC C1

(2) 求證:A 1B//平面ADC1;

(3) 求三棱錐C1 ADB1的體積.

查看答案和解析>>

同步練習冊答案