如圖,為圓的直徑,為垂直于的一條弦,垂足為,弦交于點(diǎn).

(Ⅰ)證明:四點(diǎn)共圓;
(Ⅱ)證明:.
(Ⅰ)證明過程詳見解析;(Ⅱ)證明過程詳見解析.

試題分析:本題考查四點(diǎn)共圓的判定和圓割線的性質(zhì).考查學(xué)生的分析問題解決問題的能力.第一問是證明四點(diǎn)共圓,證明四點(diǎn)共圓的基本方法:1.從被證共圓的四點(diǎn)中先選出三點(diǎn)作一圓,然后證另一點(diǎn)也在這個圓上,若能證明這一點(diǎn),即可肯定這四點(diǎn)共圓.2.若能證明其頂角相等(同弧所對的圓周角相等),從而即可肯定這四點(diǎn)共圓.3.把被證共圓的四點(diǎn)連成四邊形,若能證明其對角互補(bǔ)或能證明其一個外角等于其鄰補(bǔ)角的內(nèi)對角時,即可肯定這四點(diǎn)共圓.4.把被證共圓的四點(diǎn)兩兩連成相交的兩條線段,若能證明它們各自被交點(diǎn)分成的兩線段之積相等,即可肯定這四點(diǎn)共圓(相交弦定理的逆定理);或把被證共圓的四點(diǎn)兩兩連結(jié)并延長相交的兩線段,若能證明自交點(diǎn)至一線段兩個端點(diǎn)所成的兩線段之積等于自交點(diǎn)至另一線段兩端點(diǎn)所成的兩線段之積,即可肯定這四點(diǎn)也共圓.(割線定理的逆定理)5.證被證共圓的點(diǎn)到某一定點(diǎn)的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點(diǎn),即可肯定這四點(diǎn)共圓.上述五種基本方法中的每一種的根據(jù),就是產(chǎn)生四點(diǎn)共圓的一種原因,因此當(dāng)要求證四點(diǎn)共圓的問題時,首先就要根據(jù)命題的條件,并結(jié)合圖形的特點(diǎn),在這五種基本方法中選擇一種證法,給予證明.第二問是等式的證明,這一問中遇到的圓割線的性質(zhì)(從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等)、相似三角形、勾股定理三式聯(lián)立,證明等式成立.
試題解析:(Ⅰ)連結(jié),則.因為,所以
所以,即四點(diǎn)共圓.                5分

(Ⅱ)連結(jié).由四點(diǎn)共圓,所以.在中,,,所以.           10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD內(nèi)接于⊙O,ADBC,過點(diǎn)C作⊙O的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E.

(1)求證:AB2DE·BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正△ABC中,點(diǎn)D,E分別在邊AC, AB上,且AD=AC,AE=AB,BD,CE相交于點(diǎn)F.

(Ⅰ)求證:A,E,F,D四點(diǎn)共圓;
(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,

(I)
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題) 如圖圓的直徑,的延長線上一點(diǎn),過點(diǎn) 作圓的切線,切點(diǎn)為,連接,若,則       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,a-b=1,tan A=,其中a、b分別是∠A和∠B的對邊,則斜邊上的高h(yuǎn)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,的外接圓的切線的延長線相交于點(diǎn),的平分線與相交于點(diǎn),若,,則______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是平行四邊形的邊的中點(diǎn),直線過點(diǎn)分別交于點(diǎn).若,則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓的直徑與弦交于點(diǎn),,則______.

查看答案和解析>>

同步練習(xí)冊答案