求值化簡:
(Ⅰ);
(Ⅱ).

(Ⅰ) ;(Ⅱ) .

解析試題分析:(Ⅰ)利用指數(shù)的運算公式:,,,以及對數(shù)的運算公式:進行計算;(Ⅱ)利用三角函數(shù)的誘導(dǎo)公式:,,以及二倍角公式進行計算.
試題解析:(Ⅰ)



;                                        6分
(Ⅱ)

 
                         12分
考點:1.指數(shù)與指數(shù)冪的運算;2.對數(shù)運算;3.三角函數(shù)的誘導(dǎo)公式;4.二倍角公式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)對任意a,b都有時,.
(1)求證:在R上是增函數(shù). (2)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的單調(diào)函數(shù)滿足,且對任意都有
(1)求證:為奇函數(shù);
(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的定義域;
(2)若關(guān)于的不等式的解集是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若時,求的值域;
(Ⅱ)若存在實數(shù),當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=a|x|+ (a>0,a≠1)
(1)若a>1,且關(guān)于x的方程f(x)=m有兩個不同的正數(shù)解,求實數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=" f(" x),x∈[ 2,+∞),滿足如下性質(zhì):若存在最大(。┲,則最大(小)值與a無關(guān).試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

機床廠今年年初用98萬元購進一臺數(shù)控機床,并立即投入生產(chǎn)使用,計劃第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該機床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機床的盈利額為y萬元.
(Ⅰ)寫出y與x之間的函數(shù)關(guān)系式;
(Ⅱ)從第幾年開始,該機床開始盈利(盈利額為正值);
(Ⅲ)使用若干年后,對機床的處理方案有兩種:
(1)當年平均盈利額達到最大值時,以30萬元價格處理該機床;
(2)當盈利額達到最大值時,以12萬元價格處理該機床.
請你研究一下哪種方案處理較為合理?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的函數(shù),當時,,且對任意的 ,有,
(Ⅰ)求證:
(Ⅱ)求證:對任意的,恒有;
(Ⅲ)若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案