【題目】【廣東省佛山市2017屆高三4月教學質量檢測(二)數(shù)學文】已知橢圓 )的焦距為4,左、右焦點分別為、,且與拋物線 的交點所在的直線經(jīng)過.

(Ⅰ)求橢圓的方程;

(Ⅱ)過的直線交于, 兩點,與拋物線無公共點,求的面積的取值范圍.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析:(1)先根據(jù)焦距確定焦點坐標,再根據(jù)對稱性得與拋物線 的交點所在的直線為,即得一個交點為,代入橢圓方程,結合可解得 ;(2)先設直線 ,由直線與拋物線無公共點,利用判別式小于零得.由弦長公式可求底邊AB長,利用點到直線距離可得高,代入面積公式可得,根據(jù)對勾函數(shù)確定其值域.

試題解析:(Ⅰ)依題意得,則, .

所以橢圓與拋物線的一個交點為,

于是 ,從而.

,解得

所以橢圓的方程為.

(Ⅱ)依題意,直線的斜率不為0,設直線 ,

,消去整理得,由.

,消去整理得,

, ,則, ,

所以 ,

到直線距離,

,

,則

所以三邊形的面積的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】計算:(3﹣π)0+4sin45°﹣ +|1﹣ |.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【河南省豫南九校(中原名校)2017屆高三下學期質量考評八數(shù)學(文)】已知雙曲線的左右兩個頂點是, ,曲線上的動點關于軸對稱,直線 交于點,

(1)求動點的軌跡的方程;

(2)點,軌跡上的點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和,且2的等差中項.

1)求數(shù)列的通項公式;

2)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件求雙曲線的標準方程:

(1)經(jīng)過點(3),且一條漸近線方程為4x3y0.

(2)P(0,6)與兩個焦點的連線互相垂直,與兩個頂點連線的夾角為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知⊙和點.作⊙的兩條切線,切點分別為且直線的方程為

(1)求⊙的方程

(2)設為⊙上任一點,過點向⊙引切線,切點為, 試探究:平面內是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】路燈距地面8 m,一個身高為1.6 m的人以84 m/min的速度在地面上從路燈在地面上射影點C沿某直線離開路燈.

(1)求身影的長度y與人距路燈的距離x之間的關系式;

(2)求人離開路燈的第一個10 s內身影的平均變化率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角梯形中, , , , ,如圖1所示,將沿折起到的位置,如圖2所示.

(1)當平面平面時,求三棱錐的體積;

(2)在圖2中, 的中點,若線段,且平面,求線段的長;

查看答案和解析>>

同步練習冊答案