【題目】設(shè)函數(shù).

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)若對任意及任意 ,恒有成立,求實數(shù)的取值范圍.

【答案】(1)詳見解析;(2).

【解析】試題分析:

(1)由函數(shù)的導(dǎo)函數(shù)分類討論可得:

當(dāng)時, 在定義域上是減函數(shù);

當(dāng)時, , 上單調(diào)遞減,在上單調(diào)遞增;

當(dāng)時, 上單調(diào)遞減,在上單調(diào)遞增.

(2)結(jié)合(1)的結(jié)論可得,構(gòu)造函數(shù),討論可得.

試題解析:(1),

當(dāng),即時, , 上是減函數(shù);

當(dāng),即時,令,得;令,得;

當(dāng),即時,令,得;令,得

綜上,當(dāng)時, 在定義域上是減函數(shù);

當(dāng)時, , 上單調(diào)遞減,在上單調(diào)遞增;

當(dāng)時, 上單調(diào)遞減,在上單調(diào)遞增.

(2)由(1)知,當(dāng)時, 上單調(diào)遞減,

當(dāng)時, 有最大值,當(dāng)時, 有最小值,

對任意,恒有, .

構(gòu)造函數(shù),則

, .

函數(shù)上單調(diào)增.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】13名醫(yī)生,其中女醫(yī)生6人,現(xiàn)從中抽調(diào)5名醫(yī)生組成醫(yī)療小組前往災(zāi)區(qū),若醫(yī)療小組至少有2名男醫(yī)生,同時至多有3名女醫(yī)生,設(shè)不同的選派方法種數(shù)為N,則下列等式:

①C135﹣C71C64②C72C63+C73C62+C74C61+C75;

③C135﹣C71C64﹣C65④C72C113;

其中能成為N的算式是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉(zhuǎn)讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷量價格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.

(1)當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;

(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,圓 的圓心在橢圓上,點到橢圓的右焦點的距離為.

(1)求橢圓的標(biāo)準方程;

(2)過點作互相垂直的兩條直線,且交橢圓兩點,直線交圓 兩點,且的中點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為 .

(1)化曲線的參數(shù)方程為普通方程,化曲線的極坐標(biāo)方程為直角坐標(biāo)方程;

(2)直線為參數(shù))過曲線軸負半軸的交點,求與直線平行且與曲線相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,經(jīng)過原點的兩直線滿足,且交圓于不同兩點交, 于不同兩點,記的斜率為

(1)求的取值范圍;

(2)若四邊形為梯形,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,向量,函數(shù).

I)求單調(diào)遞減區(qū)間;

II)已知分別為內(nèi)角的對邊,為銳角,,且恰是上的最大值,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,PA⊥底面ABCDAB⊥AD,AC⊥CD,∠ABC60°,PAABBCEPC的中點.

(1) 證明:AE⊥平面PCD;

(2) PB和平面PAD所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點P到定點F(1,0)和到直線x=2的距離之比為,設(shè)動點P的軌跡為曲線E,過點F作垂直于x軸的直線與曲線E相交于A,B兩點,直線l:y=mx+n與曲線E交于C,D兩點,與線段AB相交于一點(與A,B不重合).

(1)求曲線E的方程;

(2)當(dāng)直線l與圓x2+y2=1相切時,四邊形ABCD的面積是否有最大值?若有,求出其最大值及對應(yīng)的直線l的方程;若沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案