已知函數(shù)f(x)的定義域?yàn)镽,任意x,y∈R都有f(x+y)=f(x)f(y),且當(dāng)x≥0時(shí)f(x)≥1,解不等式f(x)<
1
f(x+1)
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由條件令x=y=
t
2
,則f(t)=f2
t
2
)≥0,舍去等號(hào),再令x=y=0即有f(0)=1.再令m≤n,則n-m≥0,即有f(n-m)≥1,再由條件即可得到f(x)在R上遞增,則f(x)<
1
f(x+1)
,即為f(x)f(x+1)<1,由已知條件和單調(diào)性即可得到解集.
解答: 解:∵任意x,y∈R都有f(x+y)=f(x)f(y),
∴令x=y=
t
2
,則f(t)=f2
t
2
)≥0,
由當(dāng)x≥0時(shí)f(x)≥1,顯然f(t)>0,
再令x=y=0,則f(0)=f2(0),即有f(0)=1.
再令m≤n,則n-m≥0,即有f(n-m)≥1,
則f(n)=f(n-m+m)=f(n-m)f(m)≥f(m),
即有f(x)在R上遞增,
則f(x)<
1
f(x+1)
,即為f(x)f(x+1)<1,
即有f(2x+1)<1=f(0),
由f(x)在R上遞增,
則2x+1<0,解得x<-
1
2

故不等式的解集為(-∞,-
1
2
).
點(diǎn)評(píng):本題考查抽象函數(shù)及運(yùn)用,考查解決抽象函數(shù)的常用方法:賦值法,同時(shí)考查函數(shù)的單調(diào)性及運(yùn)用解不等式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x2-mx+2=0的解集是A,方程x2+6x-n=0的解集是B,且A∩B={2},那么m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+b
2x+1+2
是奇函數(shù).
(1)求b的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知g(x)=ex+x2
2
3
x-
3
2
),f(x)是g(x)的導(dǎo)函數(shù).
(1)判斷函數(shù)f(x)在區(qū)間[0,1]上極值點(diǎn)的個(gè)數(shù);
(2)當(dāng)x≥
1
2
時(shí),若關(guān)于x的不等式f(x)≥
5
2
x2+(a-3)x+1恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)給定三個(gè)向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).
(1)若(
a
+k
c
)⊥(2
b
-
a
),求實(shí)數(shù)k;
(2)若向量
d
滿足
d
c
,且|
d
|=
34
,求向量
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列各條件寫出直線的方程,并且化成一般式:
(1)斜率是-
1
2
,經(jīng)過(guò)點(diǎn)A(8,-2);
(2)經(jīng)過(guò)點(diǎn)B(4,2),平行于x軸;
(3)在x軸和y軸上的截距分別是
3
2
,-3;
(4)經(jīng)過(guò)兩點(diǎn)P1(3,-2),P2(5,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是遞增數(shù)列,an=n2+λn,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)滿足f(x+2)=f(2-x),且f(0)=3,f(5)=8,求這個(gè)二次函數(shù)的解析式,并求此函數(shù)在[2,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是直線l:3x-4y+5=0上的動(dòng)點(diǎn),定點(diǎn)Q的坐標(biāo)為(1,1),求線段PQ長(zhǎng)的最小值及取得最小值時(shí)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案