【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個截面,若截面為平行四邊形.

(1)求證:AB∥平面EFGH

(2)AB4,CD6,求四邊形EFGH周長的取值范圍.

【答案】(1)證明見解析; (2) (812).

【解析】

1)根據(jù)幾何體的結構特征,利用線面平行的判定定理,即可證得平面;

2)由平面,設,根據(jù)四邊形為平行四邊形,求得,得到四邊形周長的表達式,即可求解.

(1)由題意,∵四邊形EFGH為平行四邊形,∴EFHG,

HG平面ABDEF平面ABD,∴EF∥平面ABD

又∵EF平面ABC,平面ABD∩平面ABCAB,∴EFAB,

又∵AB平面EFGHEF平面EFGH,∴AB∥平面EFGH.

同理可證,平面EFGH.

(2),∵四邊形為平行四邊形,

,則,∴,

∴四邊形EFGH的周長,

又∵,∴,

即四邊形周長的取值范圍是(812).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

是函數(shù)的極值點,求曲線在點處的切線方程;

若函數(shù)在區(qū)間上為單調遞減函數(shù),求實數(shù)a的取值范圍;

m,n為正實數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某顏料公司生產(chǎn)A,B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一天之內甲、乙、丙三種染料的用量分別不超過50噸,160噸和200噸,如果A產(chǎn)品的利潤為300/噸,B產(chǎn)品的利潤為200/噸,設公司計劃一天內安排生產(chǎn)A產(chǎn)品x噸,B產(chǎn)品y.

(I)用x,y列出滿足條件的數(shù)學關系式,并在下面的坐標系中畫出相應的平面區(qū)域;

(II)該公司每天需生產(chǎn)A,B產(chǎn)品各多少噸可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知函數(shù)y4cos2x4sinxcosx1x∈R).

1)求出函數(shù)的最小正周期;

2)求出函數(shù)的最大值及其相對應的x值;

3)求出函數(shù)的單調增區(qū)間;

4)求出函數(shù)的對稱軸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)fx)滿足條件f0)=1,及fx+1)﹣fx)=2x

1)求函數(shù)fx)的解析式;

2)在區(qū)間[11]上,yfx)的圖象恒在y2x+m的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設A={x|bx2-5x+a>0},B={x|}.

(1)求ab的值;

(2)求ABA∪(UB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調性;

(2)記的導函數(shù),如果是函數(shù)的兩個零點,且滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某幾何體的三視圖如圖2所示(小正方形的邊長為),則該幾何體的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,由直三棱柱和四棱錐構成的幾何體中,,平面平面

(I)求證:;

(II)若M為中點,求證:平面;

(III)在線段BC上(含端點)是否存在點P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案