已知向量
、
的夾角為60°,且|
|=2,|
|=1,則向量
與向量
+2
的夾角等于( 。
分析:先求出
• 及|
+2|=
=
的值,再根據(jù)cosθ=
求出θ 的值.
解答:解:由題意可得
•=2×1cos60°=1,設(shè)向量
與向量
+2
的夾角等于θ,
則|
+2|=
=
=2
.
故cosθ=
=
=
.
再由 0°≤θ≤180°,可得θ=30°,
故選D.
點(diǎn)評:本題主要考查兩個向量的夾角公式,兩個向量數(shù)量積公式,求向量的模的方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知向量
與
的夾角為
,|
|=
,則
在
方向上的投影為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知向量
、
的夾角為45°,且|
|=4,(
+
)•(2
-3
)=12,則|
|=
;
在
上的投影等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知向量
、
的夾角為120°,且
||=||=4,那么
•(2+)的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2009•煙臺二模)已知向量
,
的夾角為120°,|
|=|
|=1.
與
+
共線,|
+
|的最小值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2009•閘北區(qū)二模)已知向量
和
的夾角為120°,
||=2,且
(2+)⊥,則
||=________( 。
查看答案和解析>>